

Antonio Dobado & Felipe J. Llanes Estrada Departamento de Física Teórica I Universidad Complutense de Madrid

Electroweak resonances in Higgs-EFT

Long term collaboration with Rafael L. Delgado

Beyond-SM physics at the LHC (as of June 2017)

Error: blank

contact your system manager

While waiting for "well motivated BSM physics"

Try
Effective Field Theory
for the particles
that we do see

ArXiv:1610.07922 contains an *aperçu* (CERN Yellow Report #4 of the Higgs Cross Section Working Group)

Energy desert or Gap in the spectrum

New physics? 600 GeV GAP H (125.9 GeV, PDG 2013) W (80.4 GeV), Z (91.2 GeV) Option #1: LHC will find nothing Enjoy the canals...

#2: New physics, weakly coupled Keep turning stones

#3: New physics at higher E, Perhaps out of LHC reach

- a) W₁, Z₁, h Goldstone bosons?
- b) How to make statements about that new physics scale

Gap → Strongly Interacting EWSBS

Longitudinal gauge boson scattering is the key Physical spectrum well below new physics:

 $M_h^2 \sim M_W^2 \sim M_Z^2 \sim M_t^2 \sim (100 \text{ GeV})^2 << (500-700 \text{ GeV})^2$

LO amplitudes: EWSBS ωω, hh

$$M_h^2 \ll s < 4\pi v \simeq 3 \, \text{TeV}.$$

$$T(\omega^+\omega^- \to \omega^+\omega^-) = \frac{s+t}{v^2}(1-a^2)$$

$$T(\omega^a \omega^b \to hh) = \frac{s}{v^2}(a^2 - b)\delta_{ab}$$

$$T(\omega^a \omega^b \to hh) = \frac{s}{v^2}(a^2 - b)\delta_{ab}$$

$$T(hh \to hh) = 0$$

Generalize Weinberg low-energy theorems for pion scattering

Automation of HEFT computations in perturbation theory

- Lagrangian → FeynRules (vertices)
 - → FeynArts (diagrams)
 - → FormCalc (NLO scattering amplitudes)

All programmed by our grad student Rafael Delgado

Fortran: Numerically Evaluate the amplitudes and unitarize

One-loop Feynman diagrams for

 $\omega_a \omega_b \to \omega_c \omega_d$

One-loop Feynman diagrams for

 $\omega_a\omega_b\to hh$

One-loop Feynman diagrams for

 $hh\to hh$

Resulting NLO amplitudes

$$hh \longrightarrow hh$$

$$\begin{split} T(s,t,u) &= \frac{2\gamma^r(\mu)}{v^4}(s^2 + t^2 + u^2) \\ &+ \frac{3(a^2 - b)^2}{32\pi^2 v^4} \left[2(s^2 + t^2 + u^2) - s^2 \log \frac{-s}{\mu^2} - t^2 \log \frac{-t}{\mu^2} - u^2 \log \frac{-u}{\mu^2} \right] \end{split}$$

$$\gamma^{r}(\mu) = \gamma^{r}(\mu_0) - \frac{3}{64\pi^2} (a^2 - b)^2 \log \frac{\mu^2}{\mu_0^2}$$

Resulting NLO amplitudes

$$\omega \omega \longrightarrow \omega \omega$$
 (elastic scattering)

$$T_{abcd} = A(s, t, u)\delta_{ab}\delta_{cd} + B(s, t, u)\delta_{ac}\delta_{bd} + C(s.t.u)\delta_{ad}\delta_{bc}$$

$$\begin{split} A(s,t,u) &= \frac{s}{v^2}(1-a^2) + \frac{4}{v^4}[2a_5^r(\mu)s^2 + a_4^r(\mu)(t^2+u^2)] \\ &+ \frac{1}{16\pi^2v^4} \left(\frac{1}{9}(14a^4 - 10a^2 - 18a^2b + 9b^2 + 5)s^2 + \frac{13}{18}(a^2-1)^2(t^2+u^2) \right. \\ &- \frac{1}{2}(2a^4 - 2a^2 - 2a^2b + b^2 + 1)s^2\log\frac{-s}{\mu^2} \\ &+ \frac{1}{12}(1-a^2)^2(s^2 - 3t^2 - u^2)\log\frac{-t}{\mu^2} \\ &+ \frac{1}{12}(1-a^2)^2(s^2 - t^2 - 3u^2)\log\frac{-u}{\mu^2} \right) \; . \end{split}$$

$$a_4^r(\mu) = a_4^r(\mu_0) - \frac{1}{192\pi^2} (1 - a^2)^2 \log \frac{\mu^2}{\mu_0^2}$$

$$a_5^r(\mu) = a_5^r(\mu_0) - \frac{1}{768\pi^2} (2 + 5a^4 - 4a^2 - 6a^2b + 3b^2) \log \frac{\mu^2}{\mu_0^2}$$

Resulting one-loop amplitudes $\omega \omega \longrightarrow h h$

$$\mathcal{M}_{ab}(s,t,u) = M(s,t,u)\delta_{ab}$$

$$M(s,t,u) = \frac{a^2 - b}{v^2} s + \frac{2\delta^r(\mu)}{v^4} s^2 + \frac{\eta^r(\mu)}{v^4} (t^2 + u^2)$$

$$+ \frac{(a^2 - b)}{576\pi^2 v^4} \left\{ \left[72 - 88a^2 + 16b + 36(a^2 - 1) \log \frac{-s}{\mu^2} \right] + 3(a^2 - b) \left(\log \frac{-t}{\mu^2} + \log \frac{-u}{\mu^2} \right) \right\} s^2$$

$$+ (a^2 - b) \left(26 - 9 \log \frac{-t}{\mu^2} - 3 \log \frac{-u}{\mu^2} \right) t^2$$

$$+ (a^2 - b) \left(26 - 9 \log \frac{-u}{\mu^2} - 3 \log \frac{-t}{\mu^2} \right) u^2 \right\}$$

$$\delta^{r}(\mu) = \delta^{r}(\mu_{0}) + \frac{1}{192\pi^{2}}(a^{2} - b)(7a^{2} - b - 6)\log\frac{\mu^{2}}{\mu_{0}^{2}}$$
$$\eta^{r}(\mu) = \eta(\mu_{0}) - \frac{1}{48\pi^{2}}(a^{2} - b)^{2}\log\frac{\mu^{2}}{\mu_{0}^{2}}.$$

EFT parameters evtly. Resonances at measured here @LHC much higher E

How to extrapolate?

EFT parameters evtly. measured here @LHC

Resonances at much higher E

How to extrapolate?

Complex analysis magic

You can know the WW scattering amplitude at higher E, and where its resonances are

If precision LHC measurements find slight separations from SM at low E

In practice: Cauchy-Riemann unstable, use Dispersion Relations

BSM Amplitudes in EFT grow with energy and eventually violate unitarity at some new physics scale:

Problem of perturbation theory
Blaming it to the Lagrangian is wrong logic

Unitarity is simplest for partial waves

$$\omega \omega \longrightarrow \omega \omega$$

$$ImF(s) = F(s)F^{\dagger}(s)$$

$$\operatorname{Im} A_{IJ} = |A_{IJ}|^2 \qquad \qquad |A_{IJ}|^2 \le 1$$

$$A_{IJ}^{(0)}(s) = Ks$$

$$A_{IJ}^{(0)}(s) + A_{IJ}^{(0)}(s) + A_{IJ}^{(1)}(s) + ...,$$

$$A_{IJ}^{(1)}(s) = s^2 \left(B(\mu) + D\log\frac{s}{\mu^2} + E\log\frac{-s}{\mu^2}\right)$$

(Perturbation theory satisfies it to one order less than calculated)

LO partial waves

$$A_0^0 = \frac{1}{16\pi v^2} (1 - a^2) s$$

$$A_1^1 = \frac{1}{96\pi v^2} (1 - a^2) s$$

$$A_2^0 = -\frac{1}{32\pi v^2} (1 - a^2) s$$

$$M^0 = \frac{\sqrt{3}}{32\pi v^2} (a^2 - b) s$$

Phys.Rev. D91 (2015) 075017

Left cut: use the EFT Right cut: use exact elastic unitarity for the inverse amplitude

 $\frac{\text{for complex s}}{A_{IJ}^{IAM}(s)} = \frac{(A_{IJ}^{(0)}(s))^2}{A_{IJ}^{(0)}(s) - A_{IJ}^{(1)}(s)}$

DISPERSION

RELATION

Subtractions at low s where the EFT can be used

We have published three major unitarization methods

IJ	00	02	11	20	22
Method	Any	N/D, IK	IAM	Any	N/D, IK

Generally:

Resonating amplitudes (s-channel) → quantitative agreement Potential-dominated amplitudes (left cut) → qualitative

Poles in the s-complex plane are now possible (1) WW

(2) hh (*l*=0) A coupled channel resonance

$$a = 1, b = 2$$

Phys.Rev.Lett. 114 (2015) no.22, 221803

"Pinball resonance"

(3) Wh (preliminary)

(4) $\gamma \gamma \longrightarrow Z_i Z_i$, $W_i W_i$, hh at one-loop

- *) resonances can appear in clean $\gamma\gamma$ final state
- *) EM production not negligible, charged-particle colliders are photon colliders

(5) LO + NLO top-antitop production 1607.01158

 $\omega\omega \to \omega\omega$

 $\omega\omega \rightarrow t\bar{t}$

Counting for EWSBS + $\gamma\gamma$ or $t\bar{t}$

Predictive power of EFT+dispersion Relation?

Can it predict new physics coupled to EWSBS? NO

What it can do:

- *) If the LHC precision program measures
 EFT couplings ≠ SM → can evtly predict resonances
 *) Resonance @ LHC → describe line shape and constrain M,Γ,LECs.
- *) It can then predict the line shape of production amplitudes in weakly coupled channels (Watson's f.s.t.) from the same underlying complex plane pole.

Production at the LHC and e e colliders

Tree-level ρ-like resonance

From transverse boson with IAM Form factor (Watson's final state theorem) 600

Commun.Theor.Phys. 64 (2015) 701-709 \sqrt{s} [T

$$\frac{d\hat{\sigma}(u\overline{d} \to w^+ z)}{d\Omega_{CM}} = \frac{1}{64\pi^2 s} \left(\frac{1}{4}\right) \left(\frac{g^4}{8}\right) |F_V(s)|^2 \sin^2 \theta .$$

Typical TeV-scale cross sections are smaller than current data allows

Let's discuss this at the poster session

Conclusions:

EW gap: scattering of "Low-Energy" particles W_L , Z_L , h described by

non-linear HEFT at 1-loop + dispersion relations, Equivalence Theorem

Generically strongly interacting → resonances

Coupling to $\gamma \gamma$, $t\bar{t}$ available

More work needed for realistic predictions; but with cross sections at hand it appears that the LHC could not yet have found strong resonances of the EWSBS above 1 TeV.

Theory reach: up to $4\pi v \sim 3$ TeV or, if new physics with "low-E" scale f, $4\pi f$

We can in principle provide differential cross sections to swipe EFT parameter space with resonance-search data

Antonio Dobado & Felipe J. Llanes Estrada Departamento de Física Teórica I Universidad Complutense de Madrid

Electroweak resonances in Higgs-EFT

Spare Slides

LHC window to EWSBS: W₁ W₂ scattering at high energy

Equivalence Theorem: use Goldstone instead of gauge bosons

$$= \times (1 + O(\frac{M_W^2}{E_W^2}))$$

$$T(\omega^a \omega^b \to \omega^c \omega^d) = T(W_L^a W_L^b \to W_L^c W_L^d) + O(\frac{M_W}{\sqrt{s}})$$

LO Effective Lagrangian

Therefore, HEFT for the EWSBS at low-energy may be taken as a

$$\mathcal{L}_0 = \frac{v^2}{4} \mathcal{F}(h) (D_\mu U)^\dagger D^\mu U + \frac{1}{2} \partial_\mu h \partial^\mu h - V(h)$$

$$\mathcal{F}(h) = 1 + 2a \frac{h}{v} + b \left(\frac{h}{v}\right)^2 + \dots$$

(Gauged) NLSM U = WBGB Fields (GB or pions)

"Small" effects at the 500 GeV scale:

$$D_{\mu}U = \partial_{\mu}U + W_{\mu}U - UY_{\mu}$$
 $SU(2)_{L} \times U(1)_{Y}$ Covariant derivatives

$$V(h) = \sum_{n=0}^{\infty} V_n h^n \equiv V_0 + \frac{1}{2} M_h^2 h^2 + d_3 \frac{M_h^2}{2v} h^3 + d_4 \frac{M_h^2}{8v^2} h^4 + \dots$$

Potential

Interesting particular cases:

*Minimal Standard Model: $a = b = c = c_i = d_i = 1$

 $h = \varphi$

$$d_i = 1$$
 $a_i = 0$

MCHM4

MCHM5

*No-Higgs Model (ruled out) a = b = c = 0

New scale
$$f \neq v$$
 $a^2 = b = \frac{v^2}{\hat{f}^2}$

*Minimal Dilaton Model (also disfavored by run I)

$$V(\varphi) = \frac{M_{\varphi}^2}{4f^2} (\varphi + f)^2 \left[\log \left(1 + \frac{\varphi}{f} \right) - \frac{1}{4} \right]$$

(Halyo, Goldberber, Grinstein, Skiba)

$4J^2$ $\begin{bmatrix} & & & & & & & & & & & & & & & & & & $		WCIIW14	MOIIMo
		$a = \sqrt{1 - \xi}$	
*Minimal Composite Higgs Model	$f \neq v$	$b = 1 - 2\xi$	$b = 1 - 2\xi$
	<i>J</i> / °		$c = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$
SO(5)/SO(4)	$\xi = v^2/f^2$		V - 3
		$d_3 = \sqrt{1 - \xi}$	$d_3 = \frac{1 - 2\xi}{\sqrt{1 - \xi}}$

NLO-Lagrangian (extended Apelquist-Longhitano to include the *h*)

$$\begin{split} \mathscr{L}_{\chi=4}^h &= -\frac{g_s^2}{4} \, G_{\mu\nu}^a \, \mathcal{F}_G(h) - \frac{g^2}{4} \, W_{\mu\nu}^a \, W_{\mu\nu}^{\mu\nu} \, \mathcal{F}_W(h) - \frac{g'^2}{4} \, B_{\mu\nu} \, B^{\mu\nu} \, \mathcal{F}_B(h) + \\ &+ \xi \sum_{i=1}^5 \, c_i \, \mathcal{P}_i(h) \, + \, \xi^2 \sum_{i=6}^{20} \, c_i \, \mathcal{P}_i(h) + \, \xi^3 \, \sum_{i=21}^{23} \, c_i \, \mathcal{P}_i(h) + \, \xi^4 \, c_{24} \, \mathcal{P}_{24}(h) \, , \end{split}$$

```
\mathcal{P}_1(h) = g g' B_{\mu\nu} \text{Tr} (\mathbf{T} W^{\mu\nu}) \mathcal{F}_1(h)
 \mathcal{P}_2(h) = i g' B_{\mu\nu} \text{Tr} \left( \mathbf{T} \left[ \mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right) \mathcal{F}_2(h)
\mathcal{P}_3(h) = i g \operatorname{Tr} \left( W_{\mu\nu} \left[ \mathbf{V}^{\mu}, \mathbf{V}^{\nu} \right] \right) \mathcal{F}_3(h)
\mathcal{P}_4(h) = i g' B_{\mu\nu} \text{Tr}(\mathbf{T} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_4(h)
\mathcal{P}_5(h) = i g \operatorname{Tr}(W_{\mu\nu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_5(h)
\mathcal{P}_6(h) = (\operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}))^2 \mathcal{F}_6(h)
\mathcal{P}_7(h) = (\operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}))^2 \mathcal{F}_7(h)
\mathcal{P}_8(h) = g^2 \left( \text{Tr} \left( \mathbf{T} W^{\mu\nu} \right) \right)^2 \mathcal{F}_8(h)
 \mathcal{P}_9(h) = i g \operatorname{Tr} (\mathbf{T} W_{\mu\nu}) \operatorname{Tr} (\mathbf{T} [\mathbf{V}^{\mu}, \mathbf{V}^{\nu}]) \mathcal{F}_9(h)
\mathcal{P}_{10}(h) = g \, \epsilon^{\mu\nu\rho\lambda} \text{Tr} \left( \mathbf{T} \mathbf{V}_{\mu} \right) \text{Tr} \left( \mathbf{V}_{\nu} \, W_{\rho\lambda} \right) \, \mathcal{F}_{10}(h)
\mathcal{P}_{11}(h) = \operatorname{Tr}\left((\mathcal{D}_{\mu}\mathbf{V}^{\mu})^{2}\right) \mathcal{F}_{11}(h)
\mathcal{P}_{12}(h) = \text{Tr}(\mathbf{T} \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \text{Tr}(\mathbf{T} \mathcal{D}_{\nu} \mathbf{V}^{\nu}) \mathcal{F}_{12}(h)
```

```
\mathcal{P}_{13}(h) = \text{Tr}([\mathbf{T}, \mathbf{V}_{\nu}] \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \text{Tr}(\mathbf{T} \mathbf{V}^{\nu}) \mathcal{F}_{13}(h)
\mathcal{P}_{14}(h) = i g \operatorname{Tr}(\mathbf{T}W_{\mu\nu}) \operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{14}(h)
\mathcal{P}_{15}(h) = \text{Tr}(\mathbf{T}[\mathbf{V}_{\mu}, \mathbf{V}_{\nu}]) \text{Tr}(\mathbf{T}\mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{15}(h)
\mathcal{P}_{16}(h) = \operatorname{Tr}(\mathbf{V}_{\nu} \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \partial^{\nu} \mathcal{F}_{16}(h)
\mathcal{P}_{17}(h) = \text{Tr}(\mathbf{T} \mathcal{D}_{\mu} \mathbf{V}^{\mu}) \text{Tr}(\mathbf{T} \mathbf{V}_{\nu}) \partial^{\nu} \mathcal{F}_{17}(h)
\mathcal{P}_{18}(h) = \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}^{\mu}) \partial_{\nu} \partial^{\nu} \mathcal{F}_{18}(h)
\mathcal{P}_{19}(h) = \operatorname{Tr}(\mathbf{V}_{\mu} \mathbf{V}_{\nu}) \partial^{\mu} \mathcal{F}_{19}(h) \partial^{\nu} \mathcal{F}'_{19}(h)
\mathcal{F}_{20}(h) = \operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu})\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu})\partial^{\mu}\mathcal{F}_{20}(h)\partial^{\nu}\mathcal{F}'_{20}(h)
\mathcal{P}_{21}(h) = \operatorname{Tr}\left(\mathbf{V}_{\mu}\mathbf{V}^{\mu}\right) \left(\operatorname{Tr}\left(\mathbf{T}\mathbf{V}_{\nu}\right)\right)^{2} \mathcal{F}_{21}(h)
\mathcal{P}_{22}(h) = \operatorname{Tr}(\mathbf{V}_{\mu}\mathbf{V}_{\nu})\operatorname{Tr}(\mathbf{T}\mathbf{V}^{\mu})\operatorname{Tr}(\mathbf{T}\mathbf{V}^{\nu})\mathcal{F}_{22}(h)
\mathcal{P}_{23}(h) = (\text{Tr} (\mathbf{T} \mathbf{V}_{\mu}))^2 \partial_{\nu} \partial^{\nu} \mathcal{F}_{23}(h)
\mathcal{P}_{24}(h) = (\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\mu})\operatorname{Tr}(\mathbf{T}\mathbf{V}_{\nu}))^{2} \mathcal{F}_{24}(h).
```

Restricting anomalous couplings

Primary bosonic Primary fermionic

$$\frac{\Gamma_{\mathrm{WW}^{(*)}}}{\Gamma_{\mathrm{WW}^{(*)}}^{\mathrm{SM}}} \ = \ \kappa_{\mathrm{W}}^2$$

8.0

0.9

$$\frac{\sigma_{\rm t\bar{t}\,H}}{\sigma_{\rm t\bar{t}\,H}^{\rm SM}} \ = \$$

$$rac{\Gamma_{
m b\overline{b}}}{\Gamma_{
m b\overline{b}}^{
m SM}} \ = \ \kappa_{
m b}^2$$

$$\frac{\Gamma_{\rm ZZ^{(*)}}}{\Gamma_{\rm ZZ^{(*)}}^{\rm SM}} = \kappa_{\rm Z}^2$$

$$\frac{\Gamma_{\tau^-\tau^+}}{\Gamma^{\text{SM}}_{\tau^-\tau^+}} = \kappa_{\tau}^2$$

1.1

1.2

Secondary bosonic

$$\frac{\Gamma_{\gamma\gamma}}{\Gamma_{\gamma\gamma}^{SM}} = \begin{cases} \kappa_{\gamma}^{2}(\kappa_{b}, \kappa_{t}, \kappa_{\tau}, \kappa_{W}, m_{H}) \\ \kappa_{\gamma}^{2} \end{cases}$$

$$\frac{\sigma_{\rm ggH}}{\sigma_{\rm ggH}^{\rm SM}} = \begin{cases} \kappa_{\rm g}^2(\kappa_{\rm b}, \kappa_{\rm t}, m_{\rm H}) \\ \kappa_{\rm g}^2 \end{cases}$$

$$\kappa_{yy}^2 = (1.6 \kappa_W^2 + 0.07 \kappa_t^2 - 0.67 \kappa_W \kappa_t)$$

LO ECLh (2 derivatives)

$$\mathcal{L}_{2} = -\frac{1}{2g^{2}} \text{Tr}(\hat{W}_{\mu\nu}\hat{W}^{\mu\nu}) - \frac{1}{2g^{'2}} \text{Tr}(\hat{B}_{\mu\nu}\hat{B}^{\mu\nu}) + \frac{v^{2}}{4} \left[1 + 2a\frac{h}{v} + b\frac{h^{2}}{v^{2}} \right] \text{Tr}(D^{\mu}U^{\dagger}D_{\mu}U) + \frac{1}{2}\partial^{\mu}h\,\partial_{\mu}h + \dots$$

NLO ECLh (4 derivatives)

Apelquist-Longhitano

$$a_1 \operatorname{Tr}(U \hat{B}_{\mu\nu} U^{\dagger} \hat{W}^{\mu\nu}) + i a_2 \operatorname{Tr}(U \hat{B}_{\mu\nu} U^{\dagger} [V^{\mu}, V^{\nu}]) - i a_3 \operatorname{Tr}(\hat{W}_{\mu\nu} [V^{\mu}, V^{\nu}]) + a_4 \left[\operatorname{Tr}(V_{\mu} V_{\nu}) \right] \left[\operatorname{Tr}(V^{\mu} V^{\nu}) \right] + a_5 \left[\operatorname{Tr}(V_{\mu} V^{\mu}) \right] \left[\operatorname{Tr}(V_{\nu} V^{\nu}) \right] + \dots ,$$

Additional terms including h and its derivatives (+4 operators)

One loop LO and NLO are the same order

Consistently use the NLO ECLh with LO one-loop corrections!

NLO Effective Lagrangian

for W_1W_2 , Z_1Z_1 and hh one-loop scattering

$$M_W^2, M_Z^2, M_h^2 << s << \Lambda^2$$

$$g = g' = H_{YK} = 0$$

$$\mathcal{L} = \frac{1}{2} \left(1 + 2a \frac{h}{v} + b \left(\frac{h}{v} \right)^2 \right) \partial_{\mu} \omega^a \partial^{\mu} \omega^b \left(\delta_{ab} + \frac{\omega^a \omega^b}{v^2} \right) + \frac{1}{2} \partial_{\mu} h \partial^{\mu} h$$

$$+ \frac{4a_4}{v^4} \partial_{\mu} \omega^a \partial_{\nu} \omega^a \partial^{\mu} \omega^b \partial^{\nu} \omega^b + \frac{4a_5}{v^4} \partial_{\mu} \omega^a \partial^{\mu} \omega^a \partial_{\nu} \omega^b \partial^{\nu} \omega^b + \frac{\gamma}{f^4} (\partial_{\mu} h \partial^{\mu} h)^2$$

$$+ \frac{2\delta}{v^2 f^2} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^a \partial^{\nu} \omega^a + \frac{2\eta}{v^2 f^2} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^a \partial_{\nu} \omega^a.$$

$$U(x) = \sqrt{1 - \frac{\omega^2}{v^2} + i\frac{\tilde{\omega}}{v}}$$

Dependence on the unitarization method

$$A^{ ext{IAM}}(s) = rac{[A^{(0)}(s)]^2}{A^{(0)}(s) - A^{(1)}(s)}$$
 $= rac{A^{(0)}(s) + A_L(s)}{1 - rac{A_R(s)}{A^{(0)}(s)} - \left(rac{A_L(s)}{A^{(0)}(s)}
ight)^2 + g(s)A_L(s)}$
 $A^{ ext{N/D}}(s) = rac{A^{(0)}(s) + A_L(s)}{1 - rac{A_R(s)}{A^{(0)}(s)} + rac{1}{2}g(s)A_L(-s)}$
 $A^{ ext{IK}}(s) = rac{A^{(0)}(s) + A_L(s)}{1 - rac{A_R(s)}{A^{(0)}(s)} + g(s)A_L(s)}.$

Wrapping up V, V, scattering:

$$a^2=b$$
 $a^2 \neq 1$ Strong, elastic

$$a^2 \neq 1$$
 Strong,

$$a^2 \neq 1$$
 Str

$$a^2 \neq 1$$

 $a^2 \neq b$ $a^2 = 1$ Strong, resonating through hh

strong

Our result

 $a^2 \neq b$ $a^2 \neq 1$ Both elastic, resonating are

CMS $a \simeq \kappa_V \in [0.7, 1.3]$ ATLAS $a \simeq \kappa_V \in [0.8, 1.4]$

 $a^2 = b$ $a^2 = 1$ Weak, elastic (SM)

2014 95% CL

Position of pinball resonance in complex plan $\frac{1}{\sqrt{s_0}} = M - i\Gamma/2$

$$b \in (-1,3)$$

First bound on this EFT parameter known to us

$$\xi = v^2/f^2$$
 $a = \sqrt{1-\xi} \text{ and } b = 1-2\xi$

Minimum truth in SM: global SU(2) X SU(2) → SU(2) SMEFT (linear representation)

 ω^{a} and h form a left SU(2) doublet

Always the combination (h + v)

Higher symmetry

Typical situation when h is a fundamental field

EFT based in counting dimensions: $O(d)/\Lambda^{d-4}$ (d=4,6,8...)

Philosophy: the SM is basically true, extend it

Minimum truth in it: global SU(2) X SU(2) → SU(2) HEFT (nonlinear representation)

h is a custodial SU(2) singlet; ω^a parametrize coset

(think of π^a and η wrt isospin in hadron physics)

$$SU(2)_L \times SU(2)_R / SU(2)_C = SU(2) \simeq S^3$$

Less symmetry; more independent higher dim. eff. operators

Derivative expansion → strongly interacting

Appropriate for composite models of the SBS (h as a GB)

Philosophy: agnostic respect to SM

Differences in counting

SMEFT:
count
canonical
dimensions
indep. Of
how many
loops to
yield operator

Buchalla, Catà... e.g. 1512,07140v1

HEFT: count loops (chiral dimension) indep. of boson number

High-mass particles contribution to LECs

Typically $a_i = \text{(number)} \times \mathbb{C}^2 / \mathbb{M}^2 \sim \Gamma / \mathbb{M}^2$ (see tables in A.Pich et al. 1609.06659)

An interesting exercise (1509.01585)

Resonance → Integrate out → LEC → IAM → Predict resonance

(mass, J,P ok; Γ somewhat overestimated)

WW Scattering @ LHC

First evidence of W[±]W[±] scattering

 (3.6σ)

ATLAS, arxiv:1405.6241

CMS-PAS-SMP-13-015

EM production of EWSBS at the LHC

Photon flows

$\gamma\gamma \longrightarrow Z_iZ_i$, W_iW_i , hh at one-loop

Interesting for new physics: no Higgs contribution at tree level; In particular the neutral channel vanishes in the MSM JHEP 1407 (2014) 149.

$$\mathcal{M} = ie^2(\epsilon_1^{\mu}\epsilon_2^{\nu}T_{\mu\nu}^{(1)})A(s,t,u) + ie^2(\epsilon_1^{\mu}\epsilon_2^{\nu}T_{\mu\nu}^{(2)})B(s,t,u)$$

$$\begin{array}{lcl} (\epsilon_{1}^{\mu}\epsilon_{2}^{\nu}T_{\mu\nu}^{(1)}) & = & \frac{s}{2}(\epsilon_{1}\epsilon_{2}) - (\epsilon_{1}k_{2})(\epsilon_{2}k_{1}), \\ (\epsilon_{1}^{\mu}\epsilon_{2}^{\nu}T_{\mu\nu}^{(2)}) & = & 2s(\epsilon_{1}\Delta)(\epsilon_{2}\Delta) - (t-u)^{2}(\epsilon_{1}\epsilon_{2}) - 2(t-u)[(\epsilon_{1}\Delta)(\epsilon_{2}k_{1}) - (\epsilon_{1}k_{2})(\epsilon_{2}\Delta)] \\ \end{array}$$

$$\mathcal{M} = \mathcal{M}_{LO} + \mathcal{M}_{NLO},$$
$$-\frac{c_{\gamma}}{2} \frac{h}{v} e^2 A_{\mu\nu} A^{\mu\nu}$$

$$A = A_{LO} + A_{NLO}$$
.

$$\Delta^{\mu} \equiv p_1^{\mu} - p_2^{\mu}$$

$$\mathcal{M}_{ ext{NLO}} = \mathcal{M}_{\mathcal{O}(e^2p^2)}^{1- ext{loop}} + \mathcal{M}_{\mathcal{O}(e^2p^2)}^{ ext{tree}}$$

$$B = B_{\rm LO} + B_{\rm NLO}$$

$$\gamma\gamma \to zz$$

$\mathcal{M}(\gamma\gamma \to zz)_{LO} = 0$

$$A(\gamma\gamma \to zz)_{\text{NLO}} = \frac{2ac_{\gamma}^{r}}{v^{2}} + \frac{(a^{2} - 1)}{4\pi^{2}v^{2}}$$
$$B(\gamma\gamma \to zz)_{\text{NLO}} = 0,$$

$\gamma \gamma \rightarrow w^+ w^-$

$$A(\gamma\gamma \to w^+w^-)_{\rm LO} = 2sB(\gamma\gamma \to w^+w^-)_{\rm LO} = -\frac{1}{t} - \frac{1}{u}$$

$$A(\gamma\gamma \to w^+w^-)_{\text{LO}} = \frac{8(a_1^r - a_2^r + a_3^r)}{v^2} + \frac{2ac_\gamma^r}{v^2} + \frac{(a^2-1)}{8\pi^2v^2}$$

 $B(\gamma\gamma \to w^+w^-)_{\rm NLO} = 0.$

 $(a_1^r - a_2^r + a_3^r) = (a_1 - a_2 + a_3)$

Top-antitop production

* Because the top has the largest fermion mass, its coupling to the EWSBS is largest among fermions

$$\mathcal{L} = \frac{1}{2} \partial_{\mu} h \partial^{\mu} h - \left(1 + c_{1} \frac{h}{v} + c_{2} \frac{h^{2}}{v^{2}}\right) \left\{ \left(1 - \frac{\omega^{2}}{2v^{2}}\right) M_{t} t \bar{t} + \frac{i\sqrt{2}\omega^{0}}{v} M_{t} \bar{t} \gamma^{5} t - i\sqrt{2} \frac{\omega^{+}}{v} M_{t} \bar{t}_{R} b_{L} + i\sqrt{2} \frac{\omega^{-}}{v} M_{t} \bar{b}_{L} t_{R} \right\}$$

$$+ \frac{1}{2} \left(1 + 2a \frac{h}{v} + b \left(\frac{h}{v}\right)^{2}\right) \partial_{\mu} \omega^{i} \partial^{\mu} \omega_{j} \left(\delta_{ij} + \frac{\omega_{i} \omega_{j}}{v^{2}}\right).$$

(We maintain Yukawa structure bc of B-factories success)

$$\mathcal{L}_{4} = \frac{4a_{4}}{v^{4}} \partial_{\mu} \omega^{i} \partial_{\nu} \omega^{i} \partial^{\mu} \omega^{j} \partial^{\nu} \omega^{j} + \frac{4a_{5}}{v^{4}} \partial_{\mu} \omega^{i} \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{j} \partial^{\nu} \omega^{j}$$

$$+ \frac{2d}{v^{4}} \partial_{\mu} h \partial^{\mu} h \partial_{\nu} \omega^{i} \partial^{\nu} \omega^{i} + \frac{2e}{v^{4}} \partial_{\mu} h \partial^{\nu} h \partial^{\mu} \omega^{i} \partial_{\nu} \omega^{i}$$

$$+ \frac{g}{v^{4}} (\partial_{\mu} h \partial^{\mu} h)^{2}$$

$$+ g_{t} \frac{M_{t}}{v^{4}} (\partial_{\mu} \omega^{i} \partial^{\mu} \omega^{j}) t \bar{t} + g'_{t} \frac{M_{t}}{v^{4}} (\partial_{\mu} h \partial^{\mu} h) t \bar{t}.$$
 (16)

Quantum numbers other than J=I=1; need to emit >1 boson

EM field near fast charge ~ transverse wave

Weizsäcker-Williams or "equivalent boson approx." for collinear W emission (Very crude: would have worked better at the SSC)

Here, I=2 (can yield signals in all of WW, ZZ and WZ)

$$\frac{d\sigma}{ds} = \int_0^1 dx_+ \int_0^1 dx_- \,\hat{\sigma}(s) \,\delta(s - x_+ x_- E_{\text{tot}}^2) \,\left[F_1(x_+) F_2(x_-) + F_2(x_-) F_1(x_+) \right]$$

$$F_{W_L}(x) = g_W \frac{1-x}{x}, \qquad F_{Z_L}(x) = g_Z \frac{1-x}{x},$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

$$F_{W_L}^p(x) \equiv \int_x^1 \frac{dy}{y} \sum_i f_i(y) \times F_{W_L}^{q_i} \left(\frac{x}{y}\right)$$

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma \gamma$ +pp (or ee) $\rightarrow \omega \omega$ +pp (or ee)

$$\frac{d\sigma_{\gamma\gamma\to\omega\omega}}{d\Omega} = \frac{1}{64\pi^2 s_{\gamma\gamma}} \frac{1}{4} \sum_{j} |M_J|^2 =$$

$$= \frac{16\pi}{s_{\gamma\gamma}} \sum_{I\in\{0,2\}} \left[\left[\tilde{P}_{I0} Y_{0,0} \left(\Omega\right) \right]^2 + \left[\tilde{P}_{I2} Y_{2,2} \left(\Omega\right) \right]^2 + \left[\tilde{P}_{I2} Y_{2,-2} \left(\Omega\right) \right]^2 \right] =$$

Here in the $\gamma\gamma \rightarrow \omega\omega$ cross section

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma \gamma$ +pp (or ee) $\rightarrow \omega \omega$ +pp (or ee)

$$\frac{d\sigma}{dsdp_T^2}\left(s_{\gamma\gamma},\theta\right) = \frac{1}{s_{\gamma\gamma}} \int_{x_{min}}^{x_{max}} dx_1 \frac{f\left(x_1\right)}{x_1} f\left(\frac{s_{\gamma\gamma}}{s_{ee}x}\right) \frac{d\sigma_{\gamma\gamma\to\omega\omega}\left(s_{\gamma\gamma},\theta\right)}{dp_T^2}$$

 $e \rightarrow \gamma e$

 $p \rightarrow \gamma p$ (elastic)

Electromagnetic production of EWSBS

pp (or ee) $\rightarrow \gamma \gamma$ +pp (or ee) $\rightarrow \omega \omega$ +pp (or ee)

Here in pp $\rightarrow \gamma\gamma \rightarrow \omega\omega$ Elastic contribution (protons scatter intact)