

THE W AND Z BOSON SPIN OBSERVABLES AS MESSENGERS OF NEW PHYSICS AT LHC

Eugene Paul Wigner (1902–1995)

Based on:

-J.A. Aguilar-Saavedra, J.B., PRD 93(2016)011301, arXiv:1508.04592 [hep-ph] -JAAS, JB, V. Mitsou, A. Segarra, EPJ C77(2017)234, arXiv:1701.03115 [hep-ph] *Alejandro Segarra, José Bernabéu* IFIC-Valencia

OUTLINE

- Beyond "EXCESS OF EVENTS" → W, Z Spin Observables as Messengers of hidden Production Mechanism
- Spin Density Matrix \rightarrow Why?, How?
- Correspondence Multipole Parameters \longleftrightarrow Asymmetries in Angular Distribution
- Polarized Top Quark Decay t \rightarrow bW
- Heavy Resonance Decay $j \rightarrow Z(W) j'$
- Drell-Yan Z + jets production
- Z boson + MET ↔ SUSY, DM at LHC
- Outlook

Beyond "EXCESS OF EVENTS"

With the successful operation of LHC, accumulating a wealth of data in the ATLAS and CMS experiments, at CM energies of 7, 8 and 13 TeV, and the expected increasing statistics, measurements beyond simple event counts are mandatory!

> See: Frederick Bordry Plenary talk EPS-HEP 2017

- Polarisation measurements, possible for particles with a short lifetime, through angular distributions of decay products
- WHY TO DO IT? Discriminating power between SM and New Physics models. W and Z most interesting -> MESSENGERS of hidden Production Mechanism

SPIN DENSITY MATRIX

• Quantum mixed state for Spin 1 has 8 independent Spin Observables:

MULTIPOLE PARAMETERS t(L,M) \rightarrow 3 L=1 Polarisations 5 L=2 Alignments

• Spin Density Matrix

$$\rho = \frac{1}{3}\mathbb{1} + \frac{1}{2}\sum_{M=-1}^{1} \langle S_M \rangle^* S_M + \sum_{M=-2}^{2} \langle T_M \rangle^* T_M$$

- Spherical basis of Spin Operators and Rank 2 Irreducible Tensors →
 OBSERVABLE Expectation Values.
- HOW TO MEASURE THEM? Correspondence t(L,M) with the angular distribution

$$\mathsf{Tr} \left[\mathsf{M}_{\lambda_{1}, \lambda_{2}; \, \mathsf{m}} \, \boldsymbol{\rho}_{\, \mathsf{mm}^{\prime}} \, \mathsf{M}^{*}_{\,\mathsf{m}^{\prime}; \, \lambda_{1}, \, \lambda_{2}} \right] \qquad ; \qquad \mathcal{M}_{m \lambda_{1} \lambda_{2}} = b_{\lambda_{1} \lambda_{2}} D^{1*}_{m \lambda}(\phi^{*}, \theta^{*}, 0)$$

with D¹ the **Wigner D functions** for J=1; λ_1 , λ_2 are the helicities of the two lepton decay products and $\lambda = \lambda_1 - \lambda_2$

• W \rightarrow fixed (λ_1, λ_2) / Z \rightarrow L&R \implies Polarization Analyzer $\eta_l = \left[\left(g_L^l \right)^2 - \left(g_R^l \right)^2 \right] / \left[\left(g_L^l \right)^2 + \left(g_R^l \right)^2 \right]$

HOW? Asymmetries <--> t(L,M)

Edge-central: T₀

-1.0

0.5

Z 0.0

- 0.5

- 1.0

$$t_0^1 = J_z$$

$$t_1^1 = -\frac{1}{\sqrt{2}} (J_x + iJ_y)$$

$$t_0^2 = T_0$$

$$t_1^2 = A_1 + iA_2$$

$$t_2^2 = B_1 + iB_2$$

Double forward-backward: A₁, A₂, B₁, B₂

POLARIZED TOP QUARK DECAY

 Sensitivity to a dipole interaction described by a complex coupling

HEAVY PARTICLE DECAYS

 $i \neq j = 1/2 \rightarrow Z + j' = \frac{1}{2} \iff$ similar analysis to t \rightarrow Wb

 \succ j = 0 → Z + j' = 0 ↔ Particularly interesting → FULL LONGITUDINAL Z ↔ λ =0 ↔ P- wave L=1

• The only non-zero
$$\rho_{00} = 1 \implies \langle T_0 \rangle = -\frac{2}{\sqrt{6}} \qquad A(0^-) \rightarrow Z + h(0^+)$$

> j=0 → Z + j' = 1 ↔ Spin Density Matrix diagonal

 The diagonal Spin Observables Di-Boson Resonance

$$\langle S_3 \rangle = \left[\left| a_{1,1} \right|^2 - \left| a_{-1,-1} \right|^2 \right] / N$$
$$\langle T_0 \rangle = \frac{1}{\sqrt{6}} \left[1 - 3 |a_{00}|^2 / N \right]$$

DRELL-YAN Z + jets

- \blacktriangleright Polarization Terms <S_K> affected by small Polarization Analyzer

Z boson + MET

- Search for LHC SUSY signals & Dark Matter production
- \succ Angular distribution of I in Z \rightarrow I I as function of final MET
- Leading SM

l' undetected (small p_{\perp} , large rapidity)

BSM (S₃)

BSM $\langle T_0 \rangle$

SM (S₃)

 \blacksquare SM $\langle T_0 \rangle$

• Simulation at 13 TeV CM, with Z-direction as unique reference

 \Rightarrow Access to $\langle S_3 \rangle$, $\langle T_0 \rangle$ with very interesting dependence on MET cut above 100 GeV

OUTLOOK

- Wealth of LHC collision data → Separate W, Z boson spin observables.
 How? : Definite Asymmetries in the Angular Distribution of leptons.
- Why? → Discriminating Power of hidden Production Mechanism, either SM or New Physics scenarios.
- W boson Spin properties in t \rightarrow W b decay clearly distinguish SM from a dipole vertex.
- Two-body Decay of Heavy Particles involving W or Z boson
- Different Spin assignments lead to specific zeros and values of the W or Z Spin observables.
- Drell-Yan Z production Tension in the identified Transverse M= ± 2 Alignment at large p_{\perp}
- Z boson + MET \longrightarrow Interesting rapid variation of < S₃> and < T₀> in SM above 100 GeV of MET, characteristic of SM.

- Different and constant values for a \tilde{X}_1^0 decay to Z + \tilde{G} model.

 Looking for New Physics Invaluable interesting methodology by means of these Spin Observables