Status and discovery prospects for light pseudoscalars in the NMSSM

R. Aggelton^{1,2,3}, D. Barducci⁴, N.-E. Bomark⁵, S. Moretti¹, C. Shepherd-Themistocleous^{1,2}
Based on 1609.06089

¹University of Southampton ²Rutherford Appleton Laboratory ³Bristol university ⁴SISSA, Trieste ⁵University of Agder, Kristiansand

July 7, 2017/EPS-HEP, Venice

Outline

- Introduction
 - Supersymmetry
 - The Higgs sector of the NMSSM
- The NMSSM parameter space
 - Scanning the NMSSM
 - Achieving a light pseudoscalar
- Experimental searches
 - Producing pseudoscalars
 - Viable decay channels
 - Constraining the parameter space

Outline

- Introduction
 - Supersymmetry
 - The Higgs sector of the NMSSM
- The NMSSM parameter space
 - Scanning the NMSSM
 - Achieving a light pseudoscalar
- Experimental searches
 - Producing pseudoscalars
 - Viable decay channels
 - Constraining the parameter space

Why Supersymmetry?

- We have discovered the Higgs, is there any reason to expect more from the LHC?
- If we are worried about fine tuning; Yes, the Higgs mass term needs to be stabilized.
- Naively, any such stabilisation mechanism should show up at the LHC.
- Supersymmetry is the most straight forward solution.
- The absence of experimental evidence is getting troublesome, but we do not have any better idea.

Why Supersymmetry?

- We have discovered the Higgs, is there any reason to expect more from the LHC?
- If we are worried about fine tuning; Yes, the Higgs mass term needs to be stabilized.
- Naively, any such stabilisation mechanism should show up at the LHC.
- Supersymmetry is the most straight forward solution.
- The absence of experimental evidence is getting troublesome, but we do not have any better idea.

Why Supersymmetry?

- We have discovered the Higgs, is there any reason to expect more from the LHC?
- If we are worried about fine tuning; Yes, the Higgs mass term needs to be stabilized.
- Naively, any such stabilisation mechanism should show up at the LHC.
- Supersymmetry is the most straight forward solution.
- The absence of experimental evidence is getting troublesome, but we do not have any better idea.

- In the MSSM superpotential we have $\mu \hat{H}_u \hat{H}_d$.
- ullet μ has dimension mass, so what value should it have?
- Naively: M_{GUT} or so; phenomenologically: M_Z .
- The NMSSM instead has $\lambda \widehat{S}\widehat{H}_u\widehat{H}_d$ and S gets a VEV so we get the μ term $\lambda \langle S \rangle \widehat{H}_u\widehat{H}_d$.

$$\lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

 $m_{H_0}^2 |H_0|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + (\lambda A_\lambda S H_0 H_d + \frac{\kappa}{3} A_\kappa S^3 + h.c.)$

- In the MSSM superpotential we have $\mu \hat{H}_u \hat{H}_d$.
- ullet μ has dimension mass, so what value should it have?
- Naively: M_{GUT} or so; phenomenologically: M_Z .
- The NMSSM instead has $\lambda \widehat{S}\widehat{H}_u\widehat{H}_d$ and S gets a VEV so we get the μ term $\lambda \langle S \rangle \widehat{H}_u\widehat{H}_d$.

$$\lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

 $m_{H_0}^2 |H_0|^2 + m_{H_0}^2 |H_0|^2 + m_S^2 |S|^2 + (\lambda A_\lambda S H_0 H_0 + \frac{\kappa}{3} A_\kappa S^3 + h.c.)$

- In the MSSM superpotential we have $\mu \hat{H}_u \hat{H}_d$.
- μ has dimension mass, so what value should it have?
- Naively: M_{GUT} or so; phenomenologically: M_Z .
- The NMSSM instead has $\lambda \widehat{S} \widehat{H}_u \widehat{H}_d$ and S gets a VEV so we get the μ term $\lambda \langle S \rangle \widehat{H}_u \widehat{H}_d$.

$$\lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

$$m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + (\lambda A_\lambda S H_u H_d + \frac{\kappa}{3} A_\kappa S^3 + h.c.)$$

- In the MSSM superpotential we have $\mu \hat{H}_u \hat{H}_d$.
- ullet μ has dimension mass, so what value should it have?
- Naively: M_{GUT} or so; phenomenologically: M_Z .
- The NMSSM instead has $\lambda \widehat{S} \widehat{H}_u \widehat{H}_d$ and S gets a VEV so we get the μ term $\lambda \langle S \rangle \widehat{H}_u \widehat{H}_d$.

$$\lambda \widehat{S} \widehat{H}_u \widehat{H}_d + \frac{\kappa}{3} \widehat{S}^3$$

$$m_{H_u}^2 |H_u|^2 + m_{H_d}^2 |H_d|^2 + m_S^2 |S|^2 + (\lambda A_\lambda S H_u H_d + \frac{\kappa}{3} A_\kappa S^3 + h.c.)$$

Light pseudoscalar

The scalar sector

NMSSM has 3 neutral scalars and 2 neutral pseudoscalars. The $H_{\rm SM}$ is the non-singlet-like of H_1 and H_2 . m_{A_2} , m_{H_3} and m_{H^\pm} are all similar and typically $\gtrsim 400$ GeV.

Light particles

The singlet-like scalar and pseudoscalar might be very light without conflict with data. m_{A_1} is essentially a free parameter in the theory.

July 7, 2017/EPS-HEP, Venice

Light pseudoscalar

The scalar sector

NMSSM has 3 neutral scalars and 2 neutral pseudoscalars.

The H_{SM} is the non-singlet-like of H_1 and H_2 .

 m_{A_0} , m_{H_3} and $m_{H^{\pm}}$ are all similar and typically $\gtrsim 400$ GeV.

Light particles

The singlet-like scalar and pseudoscalar might be very light without conflict with data.

 m_{A_1} is essentially a free parameter in the theory.

The light pseudoscalar

- As m_{A_1} can take any value, it can be very small.
- Hard to produce directly: no VBF nor Higgstrahlung; gluon fusion small.
- Maybe associated $b\bar{b}A_1$ production.
- Our best bet is production through decay of heavier particles, especially scalars.
- We will focus on $H_{\rm SM} \to A_1 A_1$, but also decay from other scalars can be interesting.

The light pseudoscalar

- As m_{A_1} can take any value, it can be very small.
- Hard to produce directly: no VBF nor Higgstrahlung; gluon fusion small.
- Maybe associated $b\bar{b}A_1$ production.
- Our best bet is production through decay of heavier particles, especially scalars.
- We will focus on $H_{\rm SM} \to A_1 A_1$, but also decay from other scalars can be interesting.

Outline

- Introduction
 - Supersymmetry
 - The Higgs sector of the NMSSM
- The NMSSM parameter space
 - Scanning the NMSSM
 - Achieving a light pseudoscalar
- Experimental searches
 - Producing pseudoscalars
 - Viable decay channels
 - Constraining the parameter space

Parameters of interest

Scan methods

We use scans with fixed sfermion masses, as well as GUT boundary conditions, both random scans and nested sampling; results are mostly the same.

Scan parameters

 $\lambda, \kappa, \mu_{\text{eff}}, A_{\lambda}$ and A_{κ} or M_{p} .

Constraints

Use loose constraints

 $122 < m_{H_{\rm SM}} < 128$ GeV, wide range due to theoretical uncertainties. $\Omega_{\rm Y} h^2 < 0.131$; no $(g-2)_{\mu}$ constraint.

In addition constraints from LEP searches, B-physics, perturbativity etc. from NMSSMTools.

The most important constraint

Also constraints on H_{SM} signal rates from lilith as included in NMSSMTools, cross-checked with HiggsSignals.

Light pseudoscalars

small $A_{\kappa} \Rightarrow \text{light } A_1$

The mass of $H_{\rm SM}$

The Higgs mass is most often achieved through large A_t

Outline

- Introduction
 - Supersymmetry
 - The Higgs sector of the NMSSM
- The NMSSM parameter space
 - Scanning the NMSSM
 - Achieving a light pseudoscalar
- Experimental searches
 - Producing pseudoscalars
 - Viable decay channels
 - Constraining the parameter space

Comparing constraint on $Br(H_{SM} \rightarrow A_1 A_1)$

Allowed Br depends strongly on treatment of limits!

Parameter dependence of $Br(H_{SM} \rightarrow A_1 A_1)$

Sets limit $\lambda < 0.4$ and constrains $\lambda \kappa$

Possible decays of light pseudoscalars

Much more promising for $m_{A_1} < 10 \text{ GeV}$

Low mass searches

Significant constraints for m_{A_1} < 4 GeV.

Higher mass searches

 $m_{A_1} > 10$ GeV more difficult but $2b2\mu$ promising.

Summary

- Light scalars and pseudoscalars are possible in well motivated theories for new physics.
- Such light particles might be hard to detect due to very weak interactions.
- LHC searches are starting to nag the relevant parameter space.