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a few facts     

 expected exp hints of fashionable theory solutions 

to SM puzzles are being late in showing up 

 more and more crucial to look at signature-based 

BSM searches at the LHC  ➜  boosts LHC discovery 

potential in a model-independent way 

 Hidden/Dark (SM-uncharged) Sectors can provide 

new signatures not covered by present searches

2EPS-HEP, Venice,  6 July 2017
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Outline      ( Dark Photon ➜ DP )

 Hidden Sectors with unbroken extra U(1) 

possibly solving Yukawa hierarchy + Dark Matter 

➜ predict massless DP’s      

 Higgs decays into massless DP’s   

 new Higgs signatures from DP’s at colliders 

 gg vs VBF at the LHC  

Outlook
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Dark Photons (DP) from extra U(1)’s
 Hidden Sectors  can contain light or massless gauge bosons  
 mediating long-range forces  between Dark particles 

 DP’s may have a relevant role in Cosmology and Astrophysics 
 previous pheno studies mainly involving “massive” DP 
 a massive DP interacts with SM matter via  
“kinetic mixing” with SM hypercharge U(1)Y gauge boson : 
                          [U(1) gauge invariant]

4EPS-HEP, Venice,  6 July 2017

➜ a massive DP couples to SM particles  
     with strength 

The naive one loop estimate for the mixing parameter is

�Y ⇠ egX

6⇡2

log
⇣m

⇤

⌘
(2.2)

where m is the mass of a heavy particle coupled to both the new U(1) and hypercharge and
⇤ is some cuto↵ scale. In general models of field [1] and string theory [2–13] a wide range of
kinetic mixing parameters are predicted, stretching from �Y ⇠ 10�12 to �Y ⇠ 10�3.

The only coupling of the hidden photon field Xµ to the SM sector is via the kinetic mixing
term. To see its phenomenological consequences it is most convenient to perform two shifts,

Bµ ! Bµ � �Y Xµ, followed by Xµ ! 1q
1 � �2

Y

Xµ, (2.3)

which remove the kinetic mixing term. Crucially, however, we now have direct couplings of the
SM fields to Xµ as well as mixed mass terms between Xµ and W 3

µ/Bµ that are proportional to
�Y . Since �Y is typically small in the following we will keep only the leading terms in �Y .

The mass matrix for Bµ, W 3

µ , and Xµ can now be diagonalized to obtain three neutral
gauge bosons. One of these is massless and corresponds1 to the usual photon. The other two
are massive. For small mixing (�Y ⌧ 1 and |m2

W /(m2

X � m2

Z)| ⌧ 1) one is mostly Z-like,
whereas the other is mostly hidden photon-like and corresponds to a new Z 0-like particle. For
convenience we refer to the latter particle as the hidden photon X in the following. In the limit
of small mixing the mass of X is given by the hidden photon mass parameter mX appearing in
Eq. (2.1). Performing the shift (2.3) and going to the mass eigenstate basis the coupling of the
hidden photon to SM particles is given by

QZ0 = �Y g0


�

tan2(✓W )
T 3 � (1 + �)QY

�
, where � = tan2(✓W )

m2

W

m2

X � m2

Z

. (2.4)

Both ATLAS [14] and CMS [15] have searched for narrow Z 0-like resonances in the electron
and muon channels. The data are given as limits on the product of the production cross section
with the branching ratio into leptons. Using the charges given in Eq. (2.4) for the hidden photon
we can calculate its production cross section and branching ratios and use the reported ATLAS
and CMS limits to constrain the kinetic mixing parameter �Y .2 To calculate the production
cross section and branching ratios we use MadGraph5 v1.4.5 [17] with the Hidden Abelian Higgs
Model file generated with FeynRules [18]. The resulting constraints are shown in Fig. 1, with
the CMS results depicted as solid lines and the ATLAS results depicted as dashed lines. The
thin lines correspond to constraints from the decay into µ+µ� pairs, while the thick lines denote
the combined limit from the µ+µ� and e+e� channels.

These new constraints extend the mass range of hidden photon tests to higher masses. This
is made explicit in Fig. 2, where we combine the LHC constraints (marked in orange) with
a variety of other constraints. To facilitate the comparison we have used that in the limit
m2

X ⌧ m2

Z , which applies to the low energy bounds, the mixing of the photon with the hidden
photon, �, is related to �Y through

� = �Y cos(✓W ) for m2

X ⌧ m2

Z , (2.5)

as can be seen from Eq. (2.4), which reduces to QZ0 = ��Y cos(✓W )e[T 3+QY ] = ��eQel in this
limit. We can see that the LHC not only extends existing constraints to a higher mass region
but that the limits are beginning to probe quite small values of the kinetic mixing parameter.
Nevertheless, the current limits have yet to reach the naive quantum field theory expectation
of �Y ⇠ 10�3.

1After a suitable redefinition of the gauge couplings.
2The CMS Collaboration has already interpreted their data in a related context (see ref. [15]), while ref. [16]

discusses LHC and Tevatron bounds on kinetically mixed gauge bosons in the context of dark matter.
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the SM. The first possibility for mixing between states at the renormalizable level is kinetic

mixing among the gauge bosons of U(1)Y and a U(1)hid. Recall that for abelian gauge

symmetry the field-strength tensor Bµν = ∂µBν − ∂νBµ is gauge invariant, and thus an

interaction operator is allowed between the field-strengths of two different U(1) symmetries,

Lmix = χBµνC
µν (1)

where χ is some dimensionless mixing parameter. The phenomenology for theories with this

kind of interaction is interesting [4]; however, we will not focus on that here, partly because

we do not want to confine ourselves to discussions that have applicability only to hidden

sectors with abelian symmetries, and partly because the precision electroweak fit sensitivity

to this operator is higher than the one we discuss below and being constrained as such would

be less likely to lead to profound impacts at the LHC.

Instead, we focus on the experimental implications of the renormalizable interaction of

the SM Higgs boson with the hidden sector Higgs boson |H|2|Φ|2 [5], which is a 4-dimensional

operator and gauge invariant. The Higgs boson lagrangian under consideration for this case

is

LHiggs = |DµH|2 + |DµΦ|2 + m2
H |H|2 + m2

Φ|Φ|2 − λ|H|4 − ρ|Φ|4 + η|H|2|Φ|2 (2)

Generically, for a stable potential that admits vevs for H and Φ the parameters m2
H , m2

Φ, λ

and ρ are all positive. On the other hand, η is not generically required to be of one particular

sign. For simplicity, we are assuming that Φ is a Higgs boson that breaks a U(1)hid symmetry;

however, the results that follow easily generalize to Φ being a Higgs boson that breaks any

hidden sector group spontaneously.

The component fields can be written as

H =
1√
2

(

h + v + iG0

G±

)

, Φ =
1√
2
(φ + ξ + iG′) (3)

where v(≃ 246 GeV) and ξ are vacuum expectation values about which the H and Φ

fields are expanded. The G fields are Goldstone bosons absorbed by the vector bosons,

and so no physical pseudo-scalar states are left in the spectrum. However, the scalar

spectrum has two physical states rather than just the one of the SM. In terms of the {h, φ}
interaction eigenstates, the mass matrix one must diagonalized to obtain the two physical

mass eigenstates is

M2 =

(

2λv2 ηvξ
ηvξ 2ρξ2

)

(4)
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4D interaction between field-strengths  
of two different U(1)  allowed ➜

mixing param.

➜ quite a few exp bounds on that by now !
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the massless Dark Photon case 
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if  U(1)F  unbroken no such constraints !  
(on-shell DP’s can be fully decoupled from SM sector at tree level) 

massless DP’s then interact with SM sector only through  
higher-dimensional  (➜ suppressed by 1/MD-4) interactions  
via messenger (if any) exchange !

(Holdom, PLB 166, 1986, 196) 

(massless-DP Cosmology recently considered in                              )Agrawal, Cyr-Racine, Randall,  
Scholtz,    arXiv:1610.04611

if produced in collisions : 
➜ stable + noninteracting 
➜ neutrino-like signature

➜ potentially large DP couplings       
in the Hidden Sector (HS)  allowed !

↵̄̄↵̄↵
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Explaining Yukawa hierarchy via HS and extra U(1)F

 Hidden Sectors (HS) possibly explaining  
Flavor hierarchy + Dark Matter   
 Yukawa’s are not fundamental constants  
 but  effective  low-energy  couplings  
   (➜ scalar messengers transfer radiatively Flavor and 
Chiral Symm. Breaking from HS fermions to SM fermions  
  giving Yukawa couplings at one-loop ) 
  predict extra unbroken U(1)F  ➜  massless DP’s 

 for integer-q(dark fermions)  sequence : 
➜ exponential hierarchy in M(Dark fermions)  

➜ exponential hierarchy in radiative Y(SM fermions) 
 Dark fermions as dark-matter candidates

6EPS-HEP, Venice,  6 July 2017

Gabrielli, Raidal, arXiv:1310.1090

DP coupling

MDf ⇠ exp(� 

q2Df
↵̄
)MDf ⇠ exp(� 

q2Df
↵̄
)



Barbara Mele 7EPS-HEP, Venice,  6 July 2017

Higgs  non-decoupling in SM !

g

g
H

top

non-decoupling can also apply  
 to new heavy chiral states !

(m
top

! 1)

➜  finite (potentially large) effects  
     even from heavy BSM states !

Agg!H ⇠ Ytop

mtop
! 1

v
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Higgs as a “source” of Dark Photons 

8EPS-HEP, Venice,  6 July 2017 8

H ! ��̄

�̄

�

heavy scalar messengers  
(squark/slepton-like) 
connecting SM to HS

massless (invisible)  
Dark Photon 

(mediating long-range  
 U(1)F force between  
 Dark particles)

H non-decoupling effects 
 (just as in SM) possible:

�(H ! ��̄) ⇠ 1

M2
Heavy

! 1

v2

SL,R

�(H ! ��̄) ⇠ 1

M2
Heavy

! 1

v2

mono-photon  
resonant signature

Gabrielli,Heikinheimo, BM, 
Raidal, arXiv:1405.5196 (PRD)

Dobrescu, hep-ph/0411004 (PRL)
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        prediction in minimal models
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FIG. 1: Predictions for BR(H ! ��̄) as functions of ↵̄ for
di↵erent BRinv and r�� in the minimal model.

amplitudes have the same structure as (5), and we obtain

⇤�� = ⇤��̄
R

R0

r
↵̄

↵
, ⇤�̄�̄ = ⇤��̄

r
↵

↵̄

R

R1
, (9)

where R0 = 3Nc(e2U+e2D), and R1 = Nc

P3
i=1

�
q2Ui

+ q2Di

�
.

A model-independent parametrization for the branch-
ing ratios (BRs) of the decays H ! � �, H ! � �̄, and
H ! �̄ �̄ can be expressed as follows

BR�� = N
�
1±p

r��
�2
, BRAB = NrAB , (10)

where AB ⌘ {��̄, �̄�̄}, N = BRSM
�� /(1 + r�̄�̄BR

SM
�� ), and

the ratios rAB are given by

r��̄ = 2 r��
R2

R2
0

⇣ ↵̄
↵

⌘
, r�̄�̄ = r��

R2
1

R2
0

⇣ ↵̄
↵

⌘2

, (11)

where r�� ⌘ �NP
�� /�SM

�� . Here �NP
�� and �SM

�� corresponds
to the H ! �� decay widths, mediated by new particles
and SM ones, respectively. The ± signs in Eq.(10) cor-
responds to the constructive or destructive interference
with the SM amplitude. In the scenario [16], the sign in
BR�� is predicted to be positive, while the corresponding
value for r�� is given by

r�� =

✓
R0⇠

2

3F (1� ⇠2)

◆2

, (12)

where F is the SM contribution, given by F = FW (�W )+P
f NcQ

2
fFf (�f ), with �W = 4M2

W /m2
H , �f = 4m2

f/m
2
H ,

and FW (x) and Ff (x) can be found in [26]. Once the cor-
responding Higgs BRs are measured, the U(1)F charges
qi can be derived from the Yukawa couplings by Eq. (1).

To quantify predictions of this scenario, in Fig. 1 we
plot BR(H ! ��̄) as a function of ↵̄, assuming that there
is only one messenger contributing, with a charge e = q =
1. The curves are evaluated for r�� = 0.1, 0.2 , 0.5 , 1.
The red dot bullets correspond to di↵erent BR�̄�̄ values
(or Higgs invisible branching ratios BRinv), as shown in
the plot (in the experimentally allowed range [27]). The
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.

full lines correspond to the interval BRSM
�� /2  BR�� 

2 BRSM
�� , where BRSM

�� = 2.28 ⇥ 10�3, while the dashed
lines correspond to predictions outside that range. We
find that the signal BR(H ! ��̄) can be as large as 5%
(that is more than one order of magnitude larger than
BRSM

�� ), consistently with all model parameters and the
LHC constraints.
We stress that large values of the messenger mixing-

mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
LHC. The process pp ! H ! ��̄ gives rise to the signal
� + /ET , where E� = mH/2 in the Higgs rest frame. In
the lab frame, one can define the variable MT , that is the
transverse invariant mass of the � + /ET system, as

MT =
q
2p�T /ET (1� cos��), (13)

where p�T is the photon transverse momentum, and �� is
the azimuthal distance between the photon momentum
and the missing transverse momentum /ET .

Like in the W ! e⌫ production, the MT observable
features a narrow peak at the mass of the original massive
particle (that is mH , see Fig. 2). Also the p�T distribu-
tion will exhibit a similar structure around mH/2. These

1 Large values of the mixing parameter ⇠ can be safely generated
from the purely EW messenger sector, since the latter does not
a↵ect the Higgs production cross section in gluon fusion.

solid lines corresponds to : 
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.
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We stress that large values of the messenger mixing-
mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
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The red dot bullets correspond to di↵erent BR�̄�̄ values
(or Higgs invisible branching ratios BRinv), as shown in
the plot (in the experimentally allowed range [27]). The
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.

full lines correspond to the interval BRSM
�� /2  BR�� 

2 BRSM
�� , where BRSM

�� = 2.28 ⇥ 10�3, while the dashed
lines correspond to predictions outside that range. We
find that the signal BR(H ! ��̄) can be as large as 5%
(that is more than one order of magnitude larger than
BRSM

�� ), consistently with all model parameters and the
LHC constraints.

We stress that large values of the messenger mixing-
mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
LHC. The process pp ! H ! ��̄ gives rise to the signal
� + /ET , where E� = mH/2 in the Higgs rest frame. In
the lab frame, one can define the variable MT , that is the
transverse invariant mass of the � + /ET system, as

MT =
q
2p�T /ET (1� cos��), (13)

where p�T is the photon transverse momentum, and �� is
the azimuthal distance between the photon momentum
and the missing transverse momentum /ET .

Like in the W ! e⌫ production, the MT observable
features a narrow peak at the mass of the original massive
particle (that is mH , see Fig. 2). Also the p�T distribu-
tion will exhibit a similar structure around mH/2. These

1 Large values of the mixing parameter ⇠ can be safely generated
from the purely EW messenger sector, since the latter does not
a↵ect the Higgs production cross section in gluon fusion.
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amplitudes have the same structure as (5), and we obtain

⇤�� = ⇤��̄
R

R0

r
↵̄

↵
, ⇤�̄�̄ = ⇤��̄

r
↵

↵̄

R

R1
, (9)

where R0 = 3Nc(e2U+e2D), and R1 = Nc
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A model-independent parametrization for the branch-
ing ratios (BRs) of the decays H ! � �, H ! � �̄, and
H ! �̄ �̄ can be expressed as follows
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where r�� ⌘ �NP
�� /�SM

�� . Here �NP
�� and �SM

�� corresponds
to the H ! �� decay widths, mediated by new particles
and SM ones, respectively. The ± signs in Eq.(10) cor-
responds to the constructive or destructive interference
with the SM amplitude. In the scenario [16], the sign in
BR�� is predicted to be positive, while the corresponding
value for r�� is given by
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where F is the SM contribution, given by F = FW (�W )+P
f NcQ

2
fFf (�f ), with �W = 4M2

W /m2
H , �f = 4m2

f/m
2
H ,

and FW (x) and Ff (x) can be found in [26]. Once the cor-
responding Higgs BRs are measured, the U(1)F charges
qi can be derived from the Yukawa couplings by Eq. (1).

To quantify predictions of this scenario, in Fig. 1 we
plot BR(H ! ��̄) as a function of ↵̄, assuming that there
is only one messenger contributing, with a charge e = q =
1. The curves are evaluated for r�� = 0.1, 0.2 , 0.5 , 1.
The red dot bullets correspond to di↵erent BR�̄�̄ values
(or Higgs invisible branching ratios BRinv), as shown in
the plot (in the experimentally allowed range [27]). The
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.

full lines correspond to the interval BRSM
�� /2  BR�� 

2 BRSM
�� , where BRSM

�� = 2.28 ⇥ 10�3, while the dashed
lines correspond to predictions outside that range. We
find that the signal BR(H ! ��̄) can be as large as 5%
(that is more than one order of magnitude larger than
BRSM

�� ), consistently with all model parameters and the
LHC constraints.
We stress that large values of the messenger mixing-

mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
LHC. The process pp ! H ! ��̄ gives rise to the signal
� + /ET , where E� = mH/2 in the Higgs rest frame. In
the lab frame, one can define the variable MT , that is the
transverse invariant mass of the � + /ET system, as

MT =
q
2p�T /ET (1� cos��), (13)

where p�T is the photon transverse momentum, and �� is
the azimuthal distance between the photon momentum
and the missing transverse momentum /ET .

Like in the W ! e⌫ production, the MT observable
features a narrow peak at the mass of the original massive
particle (that is mH , see Fig. 2). Also the p�T distribu-
tion will exhibit a similar structure around mH/2. These

1 Large values of the mixing parameter ⇠ can be safely generated
from the purely EW messenger sector, since the latter does not
a↵ect the Higgs production cross section in gluon fusion.
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�� corresponds
to the H ! �� decay widths, mediated by new particles
and SM ones, respectively. The ± signs in Eq.(10) cor-
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with the SM amplitude. In the scenario [16], the sign in
BR�� is predicted to be positive, while the corresponding
value for r�� is given by
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and FW (x) and Ff (x) can be found in [26]. Once the cor-
responding Higgs BRs are measured, the U(1)F charges
qi can be derived from the Yukawa couplings by Eq. (1).

To quantify predictions of this scenario, in Fig. 1 we
plot BR(H ! ��̄) as a function of ↵̄, assuming that there
is only one messenger contributing, with a charge e = q =
1. The curves are evaluated for r�� = 0.1, 0.2 , 0.5 , 1.
The red dot bullets correspond to di↵erent BR�̄�̄ values
(or Higgs invisible branching ratios BRinv), as shown in
the plot (in the experimentally allowed range [27]). The
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.

full lines correspond to the interval BRSM
�� /2  BR�� 

2 BRSM
�� , where BRSM

�� = 2.28 ⇥ 10�3, while the dashed
lines correspond to predictions outside that range. We
find that the signal BR(H ! ��̄) can be as large as 5%
(that is more than one order of magnitude larger than
BRSM

�� ), consistently with all model parameters and the
LHC constraints.
We stress that large values of the messenger mixing-

mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
LHC. The process pp ! H ! ��̄ gives rise to the signal
� + /ET , where E� = mH/2 in the Higgs rest frame. In
the lab frame, one can define the variable MT , that is the
transverse invariant mass of the � + /ET system, as

MT =
q
2p�T /ET (1� cos��), (13)

where p�T is the photon transverse momentum, and �� is
the azimuthal distance between the photon momentum
and the missing transverse momentum /ET .

Like in the W ! e⌫ production, the MT observable
features a narrow peak at the mass of the original massive
particle (that is mH , see Fig. 2). Also the p�T distribu-
tion will exhibit a similar structure around mH/2. These

1 Large values of the mixing parameter ⇠ can be safely generated
from the purely EW messenger sector, since the latter does not
a↵ect the Higgs production cross section in gluon fusion.
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and FW (x) and Ff (x) can be found in [26]. Once the cor-
responding Higgs BRs are measured, the U(1)F charges
qi can be derived from the Yukawa couplings by Eq. (1).

To quantify predictions of this scenario, in Fig. 1 we
plot BR(H ! ��̄) as a function of ↵̄, assuming that there
is only one messenger contributing, with a charge e = q =
1. The curves are evaluated for r�� = 0.1, 0.2 , 0.5 , 1.
The red dot bullets correspond to di↵erent BR�̄�̄ values
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FIG. 2: The � + /ET transverse invariant mass distribution
(in fb/GeV) of the signal (red), and the main backgrounds �j
(grey), �Z (blue), jZ (green), and W (yellow). For illustra-
tion, we show the signal for BR(H ! ��̄) = 5%.

full lines correspond to the interval BRSM
�� /2  BR�� 

2 BRSM
�� , where BRSM

�� = 2.28 ⇥ 10�3, while the dashed
lines correspond to predictions outside that range. We
find that the signal BR(H ! ��̄) can be as large as 5%
(that is more than one order of magnitude larger than
BRSM

�� ), consistently with all model parameters and the
LHC constraints.
We stress that large values of the messenger mixing-

mass parameter ⇠ are natural in the present scenario,
in order to generate a large top-quark Yukawa coupling
radiatively, and all EW precision tests can be satisfied
due to the heavy and flavor universal messenger sector
[16]. In addition, large values of ↵̄ � ↵ are naturally
expected in this scenario from Eq.(1), provided the split-
ting among the qi charges is not too small. Consequently,
the relatively large BR(H ! ��̄) shown in Fig. 1 can be
considered a generic prediction of the present theoretical
framework.1

Model independent analysis of H ! ��̄ at the
LHC. The process pp ! H ! ��̄ gives rise to the signal
� + /ET , where E� = mH/2 in the Higgs rest frame. In
the lab frame, one can define the variable MT , that is the
transverse invariant mass of the � + /ET system, as

MT =
q
2p�T /ET (1� cos��), (13)

where p�T is the photon transverse momentum, and �� is
the azimuthal distance between the photon momentum
and the missing transverse momentum /ET .

Like in the W ! e⌫ production, the MT observable
features a narrow peak at the mass of the original massive
particle (that is mH , see Fig. 2). Also the p�T distribu-
tion will exhibit a similar structure around mH/2. These

1 Large values of the mixing parameter ⇠ can be safely generated
from the purely EW messenger sector, since the latter does not
a↵ect the Higgs production cross section in gluon fusion.
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features allow for a very e�cient cut-based search strat-
egy, looking for events with a single photon and miss-
ing energy, with no jets or leptons, and cutting around
the expected maximum of the MT and p�T distributions.
These peaks could be relatively easy to pinpoint on top
of the continuous relevant backgrounds, for su�ciently
large H ! ��̄ decay rates. Thus we formulate the crite-
ria for event selection as follows:

• One isolated photon with 50 GeV < p�T < 63 GeV
and |⌘� | < 1.44.

• Missing transverse momentum with /ET > 50 GeV.

• Transverse mass in 100 GeV < MT < 126 GeV.

• No isolated jets or leptons.

The most relevant backgrounds for the above selection
criteria are, in order of importance:

1. pp ! �j, where large apparent /ET is created by
a combination of real /ET from neutrinos in heavy
quark decays and mismeasured jet energy.

2. pp ! �Z ! �⌫⌫̄ (irreducible background);

3. pp ! jZ ! j⌫⌫̄, where the jet is misidentified as a
photon;

4. pp ! W ! e⌫, where the electron (positron) is
misidentified as a photon;

5. pp ! �W ! �`⌫, where the lepton is missed;

6. pp ! ��, where one of the photons is missed.

The pp ! �j background is expected to be dominant
for the /ET range relevant here, and also the most di�cult
to estimate without detailed information about the detec-
tor performance [28]. We have evaluated this background
by simulating events with one photon and one jet, treat-
ing jets with |⌘| > 4.0 as missing energy, following [29] (a
more detailed investigation of the pp ! �j background,
although crucial for assessing the actual experiment po-
tential, is beyond the scope of this work). All the other
backgrounds have also been estimated through a parton-
level simulation, expected to be relatively accurate for
electroweak processes (applying a probability 10�3 and
1/200 to misidentify a jet and an electron, respectively, as
a photon). We will neglect the subdominant backgrounds
from processes 5 and 6 (the H ! �� background is also
negligible). The contribution of relevant backgrounds
passing the cuts is shown in Table I, and the scaling of the
di↵erent components with the transverse mass is shown
in Fig. 2. Although our leading-order parton-level anal-
ysis, after applying a cut on p�T is not much a↵ected by
a further cut on the MT variable, we expect the latter to
be very e↵ective in selecting our structured signal over
the continuous reducible QCD background [28].

� ⇥A1 � ⇥A2

Signal BRH!��̄ = 1% 65 34

�j 715 65

�Z ! �⌫⌫̄ 157 27

jZ ! j⌫⌫̄ 63 11

W ! e⌫ 22 0

Total background 957 103

S/
p
S +B (BRH!��̄ = 1%) 9.1 13.0

S/
p
S +B (BRH!��̄ = 0.5%) 4.6 6.9

TABLE I: The cross section times acceptance (in fb) for the
signal and background processes at 8 TeV for the selections
(A1) 50 GeV < p�T < 63 GeV; (A2) 60 GeV < p�T < 63 GeV.
In all cases |⌘� | < 1.44, and S/

p
S +B is for 20 fb�1. The

significance improves with tighter cuts, but this is subject to
experimental resolution and radiative corrections.

With the existing data set of 20 fb�1, for BR(H !
��̄) = 1%, we get a significance S/

p
S +B of 9 stan-

dard deviations (9�), with S(B) the number of sig-
nal (background) events passing the cuts. The sensi-
tivity limit for a 5� discovery is then estimated to be
BR(H ! ��̄) ⇠ 0.5% with the existing dataset.

Conclusions. Motivated by possible cosmological
and particle physics hints for the existence of massless
dark photon �̄, we have performed a model-independent
study of the exotic H ! ��̄ decay. At the LHC this
results in a single photon plus /ET signature, with both
energies peaked at mH/2. At parton level, we estimate
that a 5� discovery can be reached with the existing
8 TeV LHC data sets if BR(H ! ��̄) ⇠ 0.5%. Such
a large branching ratio can be easily obtained in dark
U(1)F models explaining the origin and hierarchy of the
SM Yukawa couplings. The proposed experimental signa-
ture is new, and requires detailed detector-level studies
to draw realistic conclusions on the LHC sensitivity to
dark photons.

Acknowledgment. We thank S. Chauhan,
J.P. Chou and J. Alcaraz Maestre for communications,
and C. Spethmann for collaboration in the early stages of
the project. This work was supported by grants MTT60,
IUT23-6, CERN+, and by EU through the ERDF CoE
program.

[1] P. Ade et al. [Planck Coll.], arXiv:1303.5076.
[2] For a review and references see, R. Essig et al.,

arXiv:1311.0029 [hep-ph].
[3] D. N. Spergel and P. J. Steinhardt, Phys. Rev. Lett. 84,

3760 (2000); M. Vogelsberger, J. Zavala and A. Loeb,
Mon. Not. Roy. Astron. Soc. 423, 3740 (2012).

[4] L. G. van den Aarssen, T. Bringmann and C. Pfrommer,
Phys. Rev. Lett. 109, 231301 (2012); S. Tulin, H. -B. Yu
and K. M. Zurek, Phys. Rev. D 87, 115007 (2013).

4

features allow for a very e�cient cut-based search strat-
egy, looking for events with a single photon and miss-
ing energy, with no jets or leptons, and cutting around
the expected maximum of the MT and p�T distributions.
These peaks could be relatively easy to pinpoint on top
of the continuous relevant backgrounds, for su�ciently
large H ! ��̄ decay rates. Thus we formulate the crite-
ria for event selection as follows:

• One isolated photon with 50 GeV < p�T < 63 GeV
and |⌘� | < 1.44.

• Missing transverse momentum with /ET > 50 GeV.

• Transverse mass in 100 GeV < MT < 126 GeV.

• No isolated jets or leptons.

The most relevant backgrounds for the above selection
criteria are, in order of importance:

1. pp ! �j, where large apparent /ET is created by
a combination of real /ET from neutrinos in heavy
quark decays and mismeasured jet energy.

2. pp ! �Z ! �⌫⌫̄ (irreducible background);

3. pp ! jZ ! j⌫⌫̄, where the jet is misidentified as a
photon;

4. pp ! W ! e⌫, where the electron (positron) is
misidentified as a photon;

5. pp ! �W ! �`⌫, where the lepton is missed;

6. pp ! ��, where one of the photons is missed.

The pp ! �j background is expected to be dominant
for the /ET range relevant here, and also the most di�cult
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by simulating events with one photon and one jet, treat-
ing jets with |⌘| > 4.0 as missing energy, following [29] (a
more detailed investigation of the pp ! �j background,
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be very e↵ective in selecting our structured signal over
the continuous reducible QCD background [28].

� ⇥A1 � ⇥A2

Signal BRH!��̄ = 1% 65 34

�j 715 65

�Z ! �⌫⌫̄ 157 27

jZ ! j⌫⌫̄ 63 11

W ! e⌫ 22 0

Total background 957 103

S/
p
S +B (BRH!��̄ = 1%) 9.1 13.0

S/
p
S +B (BRH!��̄ = 0.5%) 4.6 6.9

TABLE I: The cross section times acceptance (in fb) for the
signal and background processes at 8 TeV for the selections
(A1) 50 GeV < p�T < 63 GeV; (A2) 60 GeV < p�T < 63 GeV.
In all cases |⌘� | < 1.44, and S/

p
S +B is for 20 fb�1. The

significance improves with tighter cuts, but this is subject to
experimental resolution and radiative corrections.

With the existing data set of 20 fb�1, for BR(H !
��̄) = 1%, we get a significance S/

p
S +B of 9 stan-

dard deviations (9�), with S(B) the number of sig-
nal (background) events passing the cuts. The sensi-
tivity limit for a 5� discovery is then estimated to be
BR(H ! ��̄) ⇠ 0.5% with the existing dataset.

Conclusions. Motivated by possible cosmological
and particle physics hints for the existence of massless
dark photon �̄, we have performed a model-independent
study of the exotic H ! ��̄ decay. At the LHC this
results in a single photon plus /ET signature, with both
energies peaked at mH/2. At parton level, we estimate
that a 5� discovery can be reached with the existing
8 TeV LHC data sets if BR(H ! ��̄) ⇠ 0.5%. Such
a large branching ratio can be easily obtained in dark
U(1)F models explaining the origin and hierarchy of the
SM Yukawa couplings. The proposed experimental signa-
ture is new, and requires detailed detector-level studies
to draw realistic conclusions on the LHC sensitivity to
dark photons.
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results in a single photon plus /ET signature, with both
energies peaked at mH/2. At parton level, we estimate
that a 5� discovery can be reached with the existing
8 TeV LHC data sets if BR(H ! ��̄) ⇠ 0.5%. Such
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U(1)F models explaining the origin and hierarchy of the
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σ (fb)gg ! H ! �̄�gg ! H ! �̄�gg ! H ! �̄�
5

� ⇥A [8 TeV] � ⇥A [14TeV]

H!��̄ (BR��̄ = 1%) 44 101

�j 63 202

jj ! �j 59 432

e ! � 55 93

W (!`⌫)� 58 123

Z(!⌫⌫)� 102 174

total background 337 1024

TABLE I: Cross section times acceptance A (in fb) for the
gluon-fusion signal and backgrounds at 8 and 14 TeV, assum-
ing BR��̄=1%, with the selection p�T > 50 GeV, |⌘� | < 1.44,
/ET > 50 GeV, and 100 GeV < MT

��̄ < 130 GeV.

W (Z)-pair fusion, results mostly in two forward jets with
opposite rapidity, one photon and missing transverse mo-
mentum.

We started by simulating the signal by PYTHIA, by
including both the Higgs VBF production and its subse-
quent decay into a ��̄ final state. The main SM back-
grounds are given by the production of QCD multi-jets,
�+jets, and � + Z(! ⌫̄⌫)+jets. The �+jets background
has been simulated using ALPGEN. We have generated
�j, �jj, and �jjj samples with p�T > 10 GeV and

|⌘� | < 2.5 for photons, and pjT > 20 GeV and |⌘j | < 5
for jets. An isolation of �R > 0.4 between all pairs of
objects is required. We have then interfaced ALPGEN
and PYTHIA, and incorporated the jet-parton matching,
according to the MLM prescription [21]. Events contain-
ing hard partons are generated in ALPGEN with a cut on
the transverse momentum (pT > 20 GeV), and on the ra-
pidity (|⌘| < 5.0) of each parton, along with a minimum
separation (�R > 0.4) between them. These events are
then interfaced with PYTHIA for showering, to take into
account soft and collinear emission of partons. All par-
tons are then clustered using a cone jet algorithm with
pT > 20 GeV, and a cone size of �R = 0.6 (the latter
used only for matching purposes, not for the jet definition
in the event selection). An event is said to be matched
if there is a one-to-one correspondence between jets and
initial hard partons. An event with an extra jet which is
not matched to a parton is rejected in case of exclusive
matching, while is kept in case of inclusive matching for
the highest jet-multiplicity samples.

For the QCD multi-jet process and the �+Z+ jets pro-
cess we have used MadGraph 5 interfaced with PYTHIA.
In case of the QCD multi-jet process, the most central
jet is assumed to be mistagged as a photon with a corre-
sponding faking probability of 0.1%. The ISR and FSR
e↵ects, parton shower, hadronisation and finite detector
resolution e↵ects have also been implemented for the sig-
nal and all backgrounds. We have then assumed a photon
identification e�ciency of 90%. The distributions are ob-
tained with a nominal cut on the photon transverse mo-
mentum, p�T > 10 GeV, and pjT > 10 GeV on fake jet in
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FIG. 2: Photon pT (upper plot), and missing transverse-
energy (lower plot) distributions for the signal and SM back-
grounds in the VBF process. The final state in this case is
� + /ET + (�2)jets with no isolated leptons. All distributions
are normalized to unity.

the QCD multijets analysis.
In Figures 2 and 3, we plot a few kinematic distribu-

tions which are useful to separate the signal from the
backgrounds.

On this basis, we propose to select the events according
to the following criteria:

• (basic cuts) one isolated photon with p�T > 30 GeV

and |⌘� | < 2.5, and two or more jets with pjT > 20
GeV and |⌘j | < 5.0, and angular separation �R >
0.4 between all objects;

• (basic cut) missing transverse energy /ET > 30 GeV;

• (basic cut) no isolated leptons;

• (rapidity cuts) rapidities of the two highest pT jets
obey ⌘j1 ⇥ ⌘j2 < 0 and |⌘j1 � ⌘j2 | > 4.0;

• (MT
��̄ cuts) transverse mass of the photon and invis-

ible system satisfying 100 GeV < MT
��̄ < 130 GeV

(as above, the upper bound has been extended with
respect to mH to take into account the smearing of
the MT

��̄ distribution, cf. Figure 3).
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14 TeV. We have then matched our 8-TeV samples to
the event yield corresponding to the ’SUSY benchmark’

event selection criteria reported in the CMS analysis [16].
This matching results in k-factors connecting our simu-
lated samples to experimental data at 8 TeV. We find
k = 0.11 for the � j background, and k = 0.058 for the
j!� background. The order-of-magnitude reduction in
the background estimate reported by CMS as compared
to our simulation is to be understood as a result of CMS
advanced strategies for reducing event yields arising from
mis-measured missing transverse momentum in hadronic
events, as detailed in [16]. It is beyond the scope of this
work to attempt to exactly reproduce the CMS analysis.
Instead, we assume that the CMS optimization strategy
works with comparable e�ciency also in 14-TeV colli-
sions, and that the corresponding reduction of the 14-
TeV hadronic SM backgrounds is reliably captured by
rescaling our simulated samples with the same k factors
obtained from the 8-TeV matching.
We also upgraded the simulation of H ! ��̄ sig-

nal events by including the ISR e↵ects. Accordingly,
we simulated Higgs production in association with ei-
ther one or no jets with ALPGEN (v2.14) [20], inter-
faced with PYTHIA for jet-parton matching, hadroniza-
tion and detector-resolution e↵ects (see Sec. III (B) for
the jet definition and other simulation details).
The corresponding smearing in the p�T and MT

��̄ spec-
tra for the H ! ��̄ signal is shown in Figure 1. There,
the two categories corresponding to no extra jets and
one extra jet accompanying the Higgs signal are shown
separatly, along with the distributions for the hadronic
backgrounds coming from � j production, and dijet pro-
duction followed by j!� mistagging. The latter distri-
butions are obtained with a nominal cut on the photon
transverse momentum, p�T > 10 GeV, and pjT > 10 GeV
on fake jet in the dijet analysis.
Besause of initial-state-radiation and detector-

resolution e↵ects, a better sensitivity for the signal is
obtained by relaxing the maximum value of the photon
transverse-momentum cut, and increasing the transverse
mass window from 100 GeV < MT

��̄ < 126 GeV to
100 GeV < MT

��̄ < 130 GeV with respect to [15].
The main electroweak background consists of the chan-

nels pp ! W ! e⌫, where the electron is misidentified as
a photon, pp ! W (! `⌫)�, for ` outside charged-lepton
acceptance, and pp ! Z(! ⌫⌫)�. We have simulated
these processes at parton level according to the analysis
in [15] , using a e!� conversion probability of 0.005 for
the first process.
In Table I, one can find a summary of the cross sections

times acceptance (in fb) for the signal and backgrounds at
8 TeV and 14 TeV for the gluon-fusion process, assuming
BR��̄=1%, and obtained as discussed above.

With the 20 fb�1 data set at 8 TeV, our improved anal-
ysis gives a 5� discovery reach at BR��̄ ' 4.8 ⇥ 10�3,
compatible with our previous estimate [15]. The present
more-realistic event simulation was expected to deterio-
rate the capability of separating signal from background.
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FIG. 1: Photon pT (upper plot) and transverse-mass (lower
plot) distributions for the H!��̄ signal in the gluon-fusion
process, and for SM backgrounds, for inclusive � + /ET final
states with no isolated leptons. The e↵ect of extra radiation
on the signal events is also depicted. All distributions are
normalized to unity.

This e↵ect has been actually mostly compensated by the
advanced optimization experimental strategies recently
applied to the missing transverse-momentum data, on
which we have now modeled our background simulation.
Assuming an integrated luminosity of 100 (300) fb�1

at 14 TeV, and extrapolating the e↵ect of these optimiza-
tion technique to higher energies, we find a 5� discovery
potential for BR��̄ down to 1.6 ⇥ 10�3(9.2 ⇥ 10�4). At
the High-Luminosity LHC (HL-LHC), with an integrated
luminosity of 3 ab�1, the 5� reach is extended down to
2.9⇥ 10�4.

B. VBF channel

We now turn our focus on the Higgs production in
the VBF channel. This presents a lower production rate
with respect to the gluon-fusion channel. On the other
hand, it is in principle more controllable due to its strong
kinematical characterization. In particular, the process
pp ! Hjj ! ��̄jj, where the Higgs boson arises from a
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FIG. 1: Photon pT (upper plot) and transverse-mass (lower
plot) distributions for the H!��̄ signal in the gluon-fusion
process, and for SM backgrounds, for inclusive � + /ET final
states with no isolated leptons. The e↵ect of extra radiation
on the signal events is also depicted. All distributions are
normalized to unity.
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applied to the missing transverse-momentum data, on
which we have now modeled our background simulation.
Assuming an integrated luminosity of 100 (300) fb�1
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potential for BR��̄ down to 1.6 ⇥ 10�3(9.2 ⇥ 10�4). At
the High-Luminosity LHC (HL-LHC), with an integrated
luminosity of 3 ab�1, the 5� reach is extended down to
2.9⇥ 10�4.

B. VBF channel

We now turn our focus on the Higgs production in
the VBF channel. This presents a lower production rate
with respect to the gluon-fusion channel. On the other
hand, it is in principle more controllable due to its strong
kinematical characterization. In particular, the process
pp ! Hjj ! ��̄jj, where the Higgs boson arises from a
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pγT > 30 GeV |ηγ| < 2.5 

pj > 20 GeV and |η | < 5.0 

EMiss,T >30GeV 

ηj1 × ηj2 < 0 and |ηj1 − ηj2 | > 4.0 
100 GeV < MT < 130 GeV

∆φ(ji, EMiss,T ) > 1.5 

H ! ��̄
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FIG. 3: Rapidity gap between the two forward jets (upper
plot), and transverse-mass (lower plot) distributions for the
signal and SM backgrounds in the �+ /ET+(� 2)jets final state
with no isolated leptons. The �⌘ = |⌘j1 � ⌘j2 | distribution is
obtained with a cut p�T > 30 GeV, for pjT > 30 GeV on the
fake jet in the QCDmultijets analysis, and /ET > 30 GeV. The
transverse mass distribution is obtained with the additional
cuts ⌘j1 ⇥ ⌘j2 < 0 and |⌘j1 � ⌘j2 | > 4.0. All distributions are
normalized to unity.

In Table II, we present the cross sections for the signal
and dominant SM backgrounds after the sequential ap-
plication of basic cuts, rapidity cuts on the two forward
jets, and transverse-mass cut on the photon plus missing
transverse-energy system.
In order to better control the missing transverse en-

ergy arising from jet energy mis-measurements, we have
also imposed an azimuthal isolation cut ��(ji, /ET ) > 1.5
(with i = 1, 2) on the angles between the /ET direction
and the transverse momenta of the two highest-pT jets.

Furthermore, we studied the e↵ect of a selection cut
occasionally applied for searches in the VBF channel
(see, e.g., the W ! `⌫ analysis in VBF in [22]). This
is the y⇤ < 1.0 cut on the Zeppenfeld variable defined
as y⇤ = |yH � 1

2

(⌘j1 � ⌘j2)|, where the Higgs rapidity
yH is reconstructed from the photon momentum and the
missing transverse energy as described in [23]. X sys-
tems produced via VBF are in fact characterized by a
smaller y⇤ value, with respect to other X+2-jet back-

Cuts Signal �+jets � + Z+jets QCD multiijet

Basic cuts 17.7 266636 1211 72219

Rapidity cuts 8.8 8130 38.1 33022

MT
��̄ cuts 5.0 574 6.5 3236

TABLE II: Cross sections times acceptance � ⇥ A (in fb) for
the VBF signal and backgrounds at 14 TeV, after sequential
application of cuts defined in the text, assuming BR��̄=1%.

Cuts Signal �+jets � + Z+jets multijet L=300 fb

�1

y⇤ < 1.0 2.67 84.2 1.84 758 1.6�

��(ji, /ET ) >1.5 1.82 6.9 2.16 37 4.6�

both cuts 1.21 1.2 0.67 19 4.5�

TABLE III: Cross sections times acceptance � ⇥ A (in fb)
for the VBF signal and backgrounds at 14 TeV, assuming
BR��̄=1%. The first and second row corresponds to the sep-
arate e↵ect of the y⇤ and ��(ji, /ET ) cuts, respectively, after
applying all the cut sequence in Table II. The last row repre-
sents the combined e↵ects of the two cuts. The last column
shows the signal significance for an integrated luminosity of
L=300 fb�1.

grounds. The values of the ��(ji, /ET ) and y⇤ cuts have
been separately optimized in order to increase the signal
significance.
Table III presents the independent e↵ect of the y⇤ and

��(ji, /ET ) cuts, applied after the set of cuts listed in
Table II. The combined e↵ect of these two cuts is also
shown in the last row of Table III. The ��(ji, /ET ) cut
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In Table II, we present the cross sections for the signal
and dominant SM backgrounds after the sequential ap-
plication of basic cuts, rapidity cuts on the two forward
jets, and transverse-mass cut on the photon plus missing
transverse-energy system.
In order to better control the missing transverse en-

ergy arising from jet energy mis-measurements, we have
also imposed an azimuthal isolation cut ��(ji, /ET ) > 1.5
(with i = 1, 2) on the angles between the /ET direction
and the transverse momenta of the two highest-pT jets.

Furthermore, we studied the e↵ect of a selection cut
occasionally applied for searches in the VBF channel
(see, e.g., the W ! `⌫ analysis in VBF in [22]). This
is the y⇤ < 1.0 cut on the Zeppenfeld variable defined
as y⇤ = |yH � 1

2

(⌘j1 � ⌘j2)|, where the Higgs rapidity
yH is reconstructed from the photon momentum and the
missing transverse energy as described in [23]. X sys-
tems produced via VBF are in fact characterized by a
smaller y⇤ value, with respect to other X+2-jet back-
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TABLE III: Cross sections times acceptance � ⇥ A (in fb)
for the VBF signal and backgrounds at 14 TeV, assuming
BR��̄=1%. The first and second row corresponds to the sep-
arate e↵ect of the y⇤ and ��(ji, /ET ) cuts, respectively, after
applying all the cut sequence in Table II. The last row repre-
sents the combined e↵ects of the two cuts. The last column
shows the signal significance for an integrated luminosity of
L=300 fb�1.

BR��̄ (%) L=100 fb�1 L=300 fb�1 L=3 ab�1

Significance 2� 5� 2� 5� 2� 5�

BR��̄(VBF) 0.76 1.9 0.43 1.1 0.14 0.34

BR��̄ (ggF ) 0.064 0.16 0.037 0.092 0.012 0.029

TABLE IV: Reach in BR��̄ (in percentage) for a 2� exclusion
or a 5� discovery at the 14 TeV LHC, in the VBF and gluon-
fusion channels, for di↵erent integrated luminosities L.

production.
A summary of our findings is presented in Table IV,

where we show the predicted reach in detectable BR��̄

for both exclusion (at a 2� level) and discovery (at a
5� level), assuming 100, 300 and 3000 fb�1 of data at
14 TeV. The gluon-fusion potential turns out to be def-
initely higher, extending the BR��̄ reach with respect
to the VBF channel by more than one order of magni-
tude. In particular, according to the present analysis,
the full LHC program will allow to discover (exclude) a
BR��̄ value down to less than 1⇥ 10�3 (6⇥ 10�4), while
the HL-LHC phase will be sensitive to BR��̄ as small as
3 ⇥ 10�4 (2 ⇥ 10�4). We recall that BR��̄ values up to
5% are allowed in realistic BSM frameworks [15].

In light of the projected discovery reach and of the
theoretical interest in dark-photon models, we urge the
ATLAS and CMS experiments to perform a dedicated
analysis of the H ! � + /ET signature in two-body fi-
nal states. The event selection criteria used in the CMS
analysis [16], by imposing an upper limit of 60 GeV on
p�T , considerably restrict the signal phase space for the
two-body decay mode. Nevertheless, the methods used
by CMS for the suppression of the SM hadronic back-

BR��̄ (%) L= 100 fb�1 L=300 fb�1 L=3 ab�1

Significance 2� 5� 2� 5� 2� 5�

BR��̄(VBF ) 0.76 1.9 0.43 1.1 0.14 0.34

BR��̄ (ggF ) 0.064 0.16 0.037 0.092 0.012 0.029

TABLE V: Reach in BR��̄ (in percentage) for a 2� exclusion
or a 5� discovery at the 14 TeV LHC, in the VBF and gluon-
fusion channels, for di↵erent integrated luminosities L.

grounds to the /ET signature can be very e↵ective even
for relatively low transverse-momentum final states, pos-
sibly resulting in experimental sensitivities for branching
ratios well below the permil level. Similar methods could
actually be applied (once the corresponding experimental
analyzes will be available) for suppressing the SM multi-
jet background to the VBF channel, possibly increasing
the relative weight of the VBF analysis in the search for a
H ! ��̄ signature, hence expanding the LHC potential.

After the recent observation at the LHC of an excess
in the di-photon spectrum around an invariant mass of
about 750 GeV [26, 27], it would be also advisable to ex-
tend the search for �+ /ET final states to higher invariant
masses of the ��̄ pair. Indeed, the observed features of
the would-be 750-GeV �� resonance might require new
degrees of freedom in a hidden sector in order to give rise
to e↵ective couplings to photons (and gluons) (see,e.g.,
[28]). The latter degrees of freedom could well be portals
to a massless dark photon, in case they are also charged
under an extra unbroken U(1)F . Since a large U(1)F cou-
pling might be naturally allowed [19], the corresponding
rate for a ��̄ resonance at 750 GeV could already be siz-
able with the present data set. This possibility has also
been envisaged in [29–31].

In case the di-photon signature will be confirmed at
the LHC, the search for new structures in the � + /ET

transverse-mass distributions at 750 GeV would provide
extra invaluable insight about the nature of the NP be-
hind it.
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the LHC, the search for new structures in the � + /ET

transverse-mass distributions at 750 GeV would provide
extra invaluable insight about the nature of the NP be-
hind it.
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Outlook
 massless DP’s theoretically appealing  
 (evading most of present exp bounds on massive DP’s !) 

 Higgs boson as the SM portal to DP’s   

 new effective vertices for DP’s from Hidden Sectors explaining  
  Flavor Hierarchy + Dark Matter 

 rich phenomenological implications @ LHC (and ee colliders) 

 new class of FCNC signatures from  top, b, c, s, tau, mu 
decays into a massless DP  

 very distinctive ➜ bounds expected to be limited just by statistics !  

 implications for astro-part/cosmology (mostly yet to work out !)  
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