EPS Conference on High Energy Physics, Venice, Italy, 5-12 July 2017

Searching for massless Dark Photons at the LHC via Higgs production

based on :

S.Biswas, E.Gabrielli, M.Heikinheimo, BM, PRD 93 (2016) 093001 E.Gabrielli, M.Heikinheimo, BM, M.Raidal, PRD 90 (2014) 055032

Veníce, 6 July 2017

INFN Barbara Mele

Istituto Nazionale di Fisica Nucleare Sezione di Roma

a few facts

expected exp hints of fashionable theory solutions to SM puzzles are being late in showing up more and more crucial to look at signature-based BSM searches at the LHC \rightarrow boosts LHC discovery potential in a model-independent way Hidden/Dark (SM-uncharged) Sectors can provide

new signatures not covered by present searches

- Hidden Sectors with unbroken extra U(1)
 possibly solving Yukawa hierarchy + Dark Matter
 predict massless DP's
- Higgs decays into massless DP's
- new Higgs signatures from DP's at colliders
- ▶ gg vs VBF at the LHC
- Outlook

Dark Photons (DP) from extra U(1)'s

- Hidden Sectors can contain light or massless gauge bosons mediating long-range forces between Dark particles
- DP's may have a relevant role in Cosmology and Astrophysics
- previous pheno studies mainly involving "massive" DP
- a massive DP interacts with SM matter via "kinetic mixing" with SM hypercharge U(1)_y gauge boson :

 $B_{\mu
u} = \partial_{\mu}B_{\nu} - \partial_{\nu}B_{\mu}$ [U(1) gauge invariant]

mixing param.

4D interaction between field-strengths of two different U(1) allowed →

 $\mathcal{L}_{mix} = \chi B_{\mu\nu} C$

→ a massive DP couples to SM particles with strength $-\chi e Q_{el}$

→ quite a few exp bounds on that by now !

the massless Dark Photon case

if $U(1)_F$ unbroken no such constraints ! (on-shell DP's can be fully decoupled from SM sector at tree level) (Holdom, PLB 166, 1986, 196) massless DP's then interact with SM sector only through higher-dimensional (\rightarrow suppressed by 1/M^{D-4}) interactions via messenger (if any) exchange !

→ potentially large DP couplings $\overline{\alpha}$ in the Hidden Sector (HS) allowed !

if produced in collisions :
→ stable + noninteracting
→ neutrino-like signature

(massless-DP Cosmology recently considered in

Agrawal, Cyr-Racine, Randall, Scholtz, arXiv:1610.04611

Explaining Yukawa hierarchy via HS and extra $U(1)_F$

Hidden Sectors (HS) possibly explaining
Flavor hierarchy + Dark Matter
Gabrie

Gabrielli, Raidal, arXiv:1310.1090

- Yukawa's are not fundamental constants
 but effective low-energy couplings
 (-> scalar messengers transfer radiatively Flavor and
 Chiral Symm. Breaking from HS fermions to SM fermions
 giving Yukawa couplings at one-loop)
- ▶ predict extra unbroken $U(1)_F$ → massless DP's
- ▶ for integer-q(dark fermions) sequence : $M_{D_f} \sim \exp(-\frac{\kappa}{q_{D_f}^2 \bar{\alpha}})$ → exponential hierarchy in M(Dark fermions)
 → exponential hierarchy in radiative Y(SM fermions)
 ▶ Dark fermions as dark-matter candidates

finite (potentially large) effects even from heavy BSM states !

Higgs as a "source" of Dark Photons

Barbara Mele

Barbara Mele

EPS-HEP, Venice, 6 July 2017

9

new Higgs signature at colliders

WINE STATE AND SOME SOME STATE STATE OF THE STATE STATE STATE STATE STATE STATE STATE STATE STATE STATE

	resonant mono-p	hoton signature at	8 Te	V
	(A_1) 5	$50 \text{ GeV} < p_T^{\gamma} < 63 \text{ GeV} (A_2) 60 \text{ GeV}$		
	$g \to H \to \bar{\gamma}\gamma$	<u>σ (fb)</u>	$\sigma \times A_1$	$\sigma \times A_2$
9	9 / 11 / / /	Signal $BR_{H\to\gamma\bar{\gamma}} = 1\%$	65	34
F	$E_{miss} \sim E_{\gamma} \sim m_H/2$	γj	715	65
		$\gamma Z o \gamma u \overline{ u}$	157	27
		$jZ \to j \nu \bar{\nu}$	63	11
M_{7}	$T = \sqrt{2p_T^{\gamma} \not\!\!\!E_T (1 - \cos \Delta \phi)}$	$W \to e \nu$	22	0
_		Total background	957	103
-	1000	$S/\sqrt{S+B} \ (BR_{H\to\gamma\bar{\gamma}}=1\%)$	9.1	13.0
JeV	500 W	$S/\sqrt{S+B} \ (\mathrm{BR}_{H\to\gamma\bar{\gamma}}=0.5\%)$	4.6	6.9
$d\sigma/dM_T$ [fb/G	100 50 7	$BR_{H}^{\bar{\gamma}\gamma} = 5\%$	8TeV/2	20fb ⁻¹)
do∕dN	γZ	model-ind	•	
	i.Z.	110 100 100	CIT OT	DKDbi
	60° 70 80 90 100	110 120 130		
	parton-level analysis) M_T [GeV]	EPS-HEP. Venice. 6 July 2017		11

Barbara Mele

resonant mono-photon signature at 14TeV

σ (fb)	$\sigma \times A \ [8 {\rm TeV}]$	$\sigma \times A \ [14 \mathrm{TeV}]$
$H \rightarrow \gamma \bar{\gamma} (BR_{\gamma \bar{\gamma}} = 1\%)$	44	101
γj	63	202
new $jj \rightarrow \gamma j$	59	432
$e \rightarrow \gamma$	55	93
$W(\rightarrow \ell \nu)\gamma$	58	123
$Z(\rightarrow \nu \nu)\gamma$	102	174
total background	337	1024

TABLE I: Cross section times acceptance A (in fb) for the gluon-fusion signal and backgrounds at 8 and 14 TeV, assuming $\text{BR}_{\gamma\bar{\gamma}}=1\%$, with the selection $p_T^{\gamma} > 50 \text{ GeV}, |\eta^{\gamma}| < 1.44$, $\not{\!\!\!E}_T > 50 \text{ GeV}$, and 100 GeV $< M_{\gamma\bar{\gamma}}^T < 130 \text{ GeV}$.

MadGraph5_aMC@NLO + PYTHIA (bckgr) ALPGEN + PYTHIA (H signal)

 γj bckgr modeled on data at 8 TeV (CMS, arXiv:1507.00359 [hep-ex] (PLB))

Biswas, Gabrielli, Heikinheimo, BM, arXiv:1603.01377 (PRD)

(includes parton-shower) Barbara Mele

gg fusion vs VBF

Barbara Mele

mono-photon signature in VBF at 14TeV

two extra forward jets !

reference BRDP

σ (fb)

Cuts (sequential)	Signal	$\gamma + \mathrm{jets}$	$\gamma + Z + \text{jets}$	QCD multiijet		
Basic cuts	17.7	266636	1211	72219		
Rapidity cuts	8.8	8130	38.1	33022		
$M^T_{\gamma \bar{\gamma}}$ cuts	5.0	574	$_{6.5}$	3236		

Cuts (individual)	Signal	$\gamma + \text{jets}$	$\gamma + Z + \text{jets}$	multijet	$L=300 \ {\rm fb}^{-1}$
$y^* < 1.0$	2.67	84.2	1.84	758	1.6σ
$\Delta \phi(j_i, \not\!\!\!E_T) > 1.5$	1.82	6.9	2.16	37	4.6σ
both cuts	1.21	1.2	0.67	19	4.5σ

MadGraph5_aMC@NLO + PYTHIA ALPGEN + PYTHIA

Biswas, Gabrielli, Heikinheimo, BM, arXiv:1603.01377 (PRD)

model-independent bounds @ LHC 14 TeV

$$gg \to H \to \bar{\gamma}\gamma$$
 vs $VV \to H \to \bar{\gamma}\gamma$

${ m BR}_{\gammaar\gamma}$ (%)	$\mathrm{L}{=100\mathrm{fb}^{-1}}$		$L{=}300{\rm fb}^{-1}$		$L=3 ab^{-1}$	
Significance	2σ	5σ	2σ	5σ	2σ	5σ
${ m BR}_{\gammaar\gamma}({ m VBF})$	0.76	1.9	0.43	1.1	0.14	0.34
$\operatorname{BR}_{\gamma\bar{\gamma}}\left(\underline{ggF}\right)$	0.064	0.16	0.037	0.092	0.012	0.029

gg fusion sensitive down to BR_{DP} ~ 10⁻⁴-10⁻³ (VBF ~10 times worse ...) Biswas, Gabrielli, Heikinheimo, BM,

Barbara Mele

EPS-HEP, Venice, 6 July 2017

arXiv:1603.01377 (PRD)

Outlook

massless DP's theoretically appealing

(evading most of present exp bounds on massive DP's !)

- Higgs boson as the SM portal to DP's
 - new effective vertices for DP's from Hidden Sectors explaining Flavor Hierarchy + Dark Matter
- rich phenomenological implications @ LHC (and ee colliders)

see also Biswas, Gabrielli, Heikinheimo, BM, arXiv:1503.05836 (JHEP) ; arXiv:1703.00402

- new class of FCNC signatures from top, b, c, s, tau, mu decays into a massless DP
 Gabrielli, BM, Raidal, Venturini, arXiv:1607.05928 (PRD) Fabbrichesi, Gabrielli, BM, arXiv:1705.03470 (PRL) Dobrescu, hep-ph/0411004 (PRL)

implications for astro-part/cosmology (mostly yet to work out !)