Quasi-sterile neutrinos at long-baseline oscillation experiments

Bogdan Dobrescu

Fermilab, Theoretical Physics Department

Long-baseline neutrino experiments can search for various new particles. This talk: a theory that predicts unusual signals in the far detector.

July 8, 2017 – talk at the EPS-HEP conference

New gauge symmetry acting on quarks only: $U(1)_B$ charges proportional to baryon number

Fields	spin	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$egin{array}{c} q_L^i = (u_L^i, \ d_L^i)^ op \end{array}$	1/2	3	2	+1/6	+1/3
u^i_R , d^i_R	1/2	3	1	$\left +2/3 ight $, $-1/3$	+1/3

Theoretical requirements:

- $U(1)_B$ must be spontaneously broken. Simple choice: a new scalar field ϕ acquires a VEV.
- All $U(1)_B$ gauge anomalies must cancel.
 - \Rightarrow Some new fermions ("anomalons") must be

vectorlike with respect to $SU(3)_c imes SU(2)_W imes U(1)_Y$, and

chiral with respect to the new gauge group.

Gauge anomaly cancellation

W. Bardeen, 1969, ...

Gauge symmetries may be broken by quantum effects. Cure: sums over fermion triangle diagrams must vanish.

Standard Model – anomalies cancel within each fermion generation: $\begin{bmatrix} SU(3)_c \end{bmatrix}^2 U(1)_Y \colon 2(1/6) + (-2/3) + (1/3) = 0$ $\begin{bmatrix} SU(2)_W \end{bmatrix}^2 U(1)_Y \colon 3(1/6) + (-1/2) = 0$ $\begin{bmatrix} U(1)_Y \end{bmatrix}^3 \colon 3 \begin{bmatrix} 2(1/6)^3 + (-2/3)^3 + (1/3)^3 \end{bmatrix} + 2(-1/2)^3 + (-1)^3 = 0$... $(u_L, d_L) \qquad u_R \qquad d_R \qquad (\nu_L, e_L) \qquad e_R$

A complete, renormalizable model:

Fields	spin	$SU(3)_c$	$SU(2)_W$	$U(1)_Y$	$U(1)_B$
$egin{array}{c} q_L^i = (u_L^i, ~ d_L^i)^ op \end{array}$	1/2	3	2	+1/6	+1/3
u^i_R , d^i_R	1/2	3	1	+2/3 , $-1/3$	+1/3
$egin{array}{c} L_L = (L_L^N, \ L_L^E)^ op \end{array}$	1/2	1	2	-1/2	-3/2
$L_R = (L_R^N, \ L_R^E)^ op$	1/2	1	2	-1/2	+3/2
$oldsymbol{E_L}$	1/2	1	1	-1	+3/2
E_R	1/2	1	1	-1	-3/2
N_L	1/2	1	1	0	+3/2
N_{*R}	1/2	1	1	0	-3/2
N_{0R}	1/2	1	1	0	0
ϕ	0	1	1	0	+3
ϕ'	0	1	1	Ο	+3/2

"Baryonic" Z'_B : same coupling (g_B) to all six quark flavors.

Limits on anomalon masses impose the constraint on g_B at low mass B.A. Dobrescu, C. Frugiuele, 1404.3947

Yukawa interactions of neutral fermions:

$$-\left(\lambda_{N}\langle\phi\rangle\,\overline{N}_{\ast R}+\lambda_{N}^{\prime}\langle\phi^{\prime}\rangle\,\overline{N}_{0R}\right)N_{L}+\mathrm{H.c.}$$

This leads to a Dirac mass for a fermion N with

 $N_R \equiv N_{*R} \cos \alpha + N_{0R} \sin \alpha$

The state orthogonal to N_R ,

$$u_R \equiv -N_{*R} \sin lpha + N_{0R} \cos lpha$$

remains a massless Weyl fermion.

This is a "quasi-sterile" neutrino because its interactions are mediated only by the Z'_B boson.

If the SM neutrinos acquire Majorana masses as usual from dimension-5 operators

$${c_{ij}\over M} H H \overline{\ell}_L^{\,ic} \ell_L^j ~~,$$

then the dimension-5 operator

$${c_i'\over M} \phi' H\, \overline\ell_L^{\,\,i} N_{*R}$$

is also likely to be present. This leads to mixing between SM neutrinos and the ν_R and N fermions.

The mixing of the SM u_{μ} with the massless u_R is restricted by various measurements of neutrino properties: $\theta \leq O(0.2)$

For the future DUNE experiment, $L \approx 1300$ km and E_{ν} is typically in the 1–4 GeV range, so that $P(\nu_{\mu} \rightarrow \nu_{R}) \approx \theta^{2} \sim O(10^{-2})$.

The quasi-sterile neutrino ν_R and the heavy Dirac state N have the following interactions with the Z'_B boson:

$$-\frac{3g_B}{4}Z'_{B\mu}\left[-\sin\alpha\cos\alpha\left(\overline{N}_R\gamma^{\mu}\nu_R+\text{H.c}\right)\right.\\\left.+\sin^2\alpha\ \overline{\nu}_R\gamma^{\mu}\nu_R+\cos^2\alpha\ \overline{N}_R\gamma^{\mu}N_R\right]$$

The first term here allows the up-scattering of ν_R in N_R , when the energy of the incoming neutrino is large enough.

 $\sim 100~N$ fermions may be produced inside DUNE.

Total decay width, $\Gamma(N)$, of the *N* fermion (solid lines) and partial width for the $N \rightarrow \nu_R \pi^+ \pi^-$ decay (dashed lines):

The difference between the total width and the $N \rightarrow \nu_R \pi^+ \pi^$ width is due to the invisible $N \rightarrow 3\nu_R$ decay.

Parameters used here are $M_{Z'} = 50$ GeV, $g_B = 0.5$.

Decay length of the N fermion in the rest frame, L_N , is proportional to M_{Z^\prime}/g_B ,

For $M_{Z'} = 50$ GeV, and $g_B = 0.5$:

Conclusions

• Quasi-sterile neutrinos have interactions only through nonstandard bosons.

• A quasi-sterile neutrino may be produced in long-baseline neutrino oscillation experiments.

• Interaction of a quasi-sterile neutrino ν_R with a Z' boson and a new fermion N of GeV-scale mass may lead to N production in the far detector.

• $N \rightarrow \pi^+ \pi^- \nu_R$ decay would give a spectacular signal.

DUNE will probe the laws of nature in a new regime \rightarrow many searches for new particles will be possible.