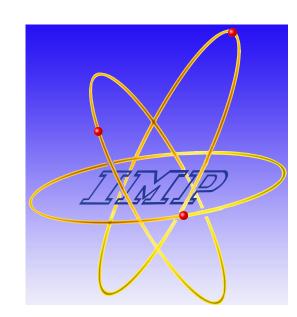


STATISTICAL METHODS FOR THE NEUTRINO MASS HIERARCHY DETERMINATION



EMILIO CIUFFOLI IMP, CAS, LANZHOU

14000

STATISTICAL DISTRIBUTION

The two hierarchies are non-nested hypothesis, hence Wilks' theorem cannot be applied. This means that the $\Delta \chi^2$, defined as

 $\Delta \chi^2 = \chi^2_{IH} - \chi^2_{NH}$

does not follow a one-degree-of-freedom χ^2 distribution and the number of σ 's $n \neq \sqrt{\Delta \chi^2}$. Under certain conditions it instead follows a Gaussian distribution [1, 2, 3] with $\sigma = 2\sqrt{\Delta\chi^2}$, where $\overline{\Delta \chi^2}$ is the expected $\Delta \chi^2$. These conditions seem to be satisfied in the case of reactor neutrino experiments, but not in the case of accelerator neutrino experiments.

> Accelerator Neutrinos δ_{CP} =90 Accelerator Neutrinos $\delta_{CP}=0$ 6000

ADDITIONAL PARAMETER

A possible solution for the non-nested problem is to introduce a new pull parameter, without physical meaning: this was proposed first in [5] for reactor neutrino experiments, writing

 $|\Delta m_{31}^2| = |\Delta m_{32}^2| + (2\eta - 1)|\Delta m_{21}^2|$

 $\eta = 1 \rightarrow NH$, $\eta = 0 \rightarrow IH$. A more general approach, that can be used also with accelerator neutrinos, was suggested in [6], considering the linear combination

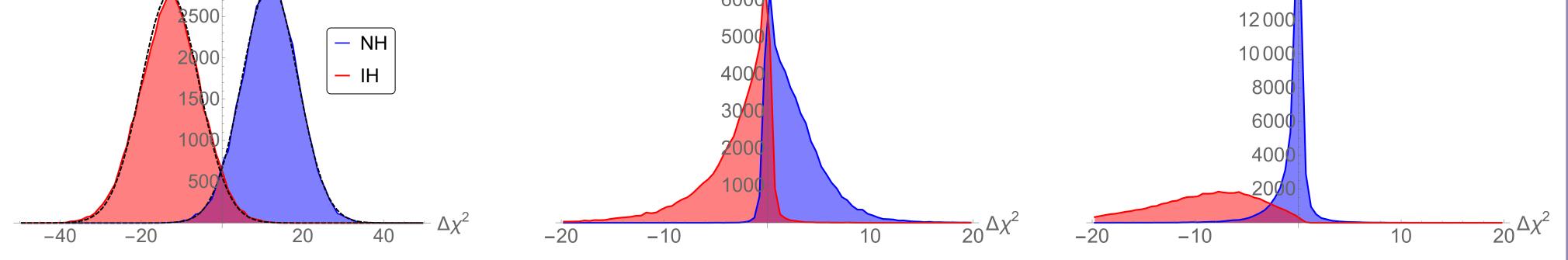


Figure 1: Left Panel: Pdf of $\Delta \chi^2$ in reactor neutrino experiments; the dashed curves are Gaussian fits. Central and right panels: Pdf of $\Delta \chi^2$ for accelerator neutrinos, using different values of δ_{CP} [4]

$\eta f(E) + (1 - \eta)g(E)$

where f(E) and g(E) are the spectra for normal and inverted hierarchy, respectively. In this way the problem is reduced to parameter fitting; $\Delta \chi^2$, which can be defined for both hierarchies, now follows a χ^2 distribution

$$\Delta \chi^2_{NH} = \chi^2_{\eta=1} - \chi^2_{\min} \qquad \Delta \chi^2_{IH} = \chi^2_{\eta=0} - \chi^2_{\min}$$

LAPLACE METHOD

Reactor Neutrinos

In the Bayesian approach, if additional pull parameters θ are present they must be marginalized, *i.e.*

$$\Pr(\mathbf{D}|MH) = \int \Pr(\mathbf{D}|MH, \boldsymbol{\theta}) \pi(\boldsymbol{\theta}) d^{n}\boldsymbol{\theta}$$

while in the frequentist approach they are **minimized**, using the best fit value for θ . When several pull parameters are present, marginalization requires multi-dimensional

FREQUENTIST APPROACH

Hypothesis Test [3] We test the two hierarchies separately: before the experiment, we define two threshold $T_{c,NH}$ and $T_{c,IH}$; if $\Delta \chi^2 > T_{c,IH}$ the inverted hierarchy is rejected, if $\Delta \chi^2 < T_{c,NH}$ the normal hierarchy is rejected :

- The confidence level (CL) that can be achieved depends only on $T_{c,NH}$, $T_{c,IH}$, not on the actual result of the experiment (that determines only if such a CL is achieved or not) \Rightarrow convenient to quantify the precision of future experiments
- It is possible to accept or reject both hierarchies at the same time
- To calculate CL we need to know the pdf of $\Delta \chi^2$; problems when it depends strongly on pull parameters

integrals. However, if the χ^2 is strongly peaked around the minimum, and Det(C) is the same for the two hierarchies (C=covariance matrix), using the Laplace method we can prove that

 $\Delta \chi_B^2 = \Delta \chi_F^2$

 $\Delta \chi_B^2, \Delta \chi_F^2$ are the $\Delta \chi^2$ obtained marginalizing or minimizing over the pull parameters, respectively.

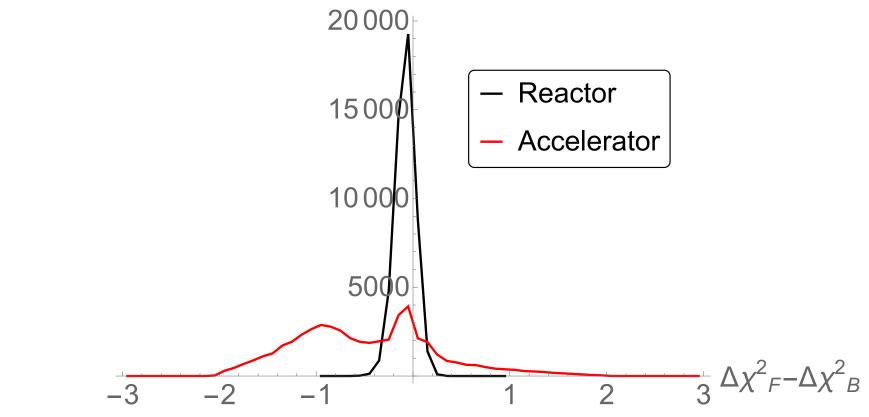


Figure 2: Difference between marginalization and minimization in accelerator and reactor neutrino experiments (simplified models with only one parameter)

Possible definition of sensitivity (for the Gaussian, symmetric case, generalization is trivial):

• Median Sensitivity:
$$T_{c,NH(IH)} = -(+)\overline{\Delta\chi^2}$$
. $n = \sqrt{\overline{\Delta\chi^2}}$, power=0.5

• Crossing Sensitivity: $T_{c,NH} = T_{c,IH} = 0$, $n = \sqrt{\Delta \chi^2}/2$, power=CL

p-value Probability of getting a "more extreme" result than the one obtained from the experiment

p-value = $\Pr(\Delta \chi^2 > (<) \Delta \chi^2_{obs} | IH(NH))$

- Also relies on the knowledge of $\Delta \chi^2$'s pdf
- **Two** quantities must be considered: **both** the p-values for NH and IH. Ex: NH excluded at 5σ 's, IH excluded at 1σ 's or NH excluded at 5σ 's, IH excluded at 5σ 's • p-value(NH)«1 does not necessarily implies IH

BAYESIAN APPROACH [2, 4]

- Frequentist Approach \Rightarrow Pr(D|MH): probability of the data **D** given MH. Suppose we find p-value(NH)=0.0001: alone not enough to say NH is unlikely
- **Bayesian Approach** \Rightarrow Pr(MH | **D**): probability that the hierarchy is normal (or inverted) given the data

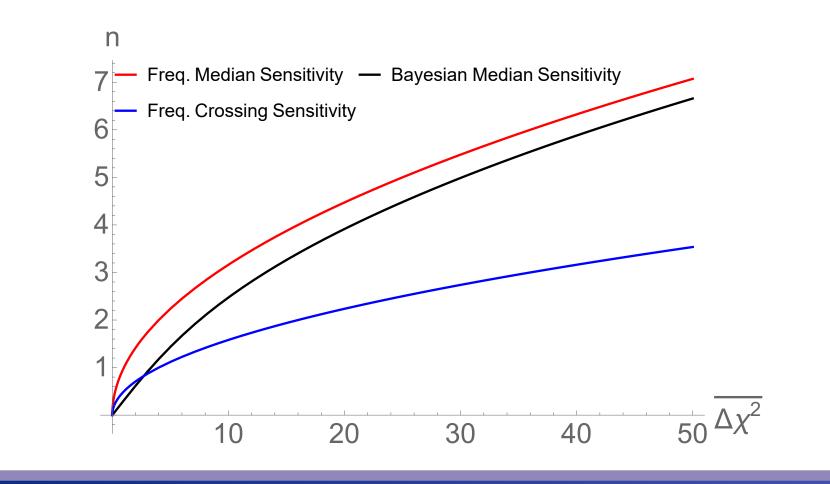
Using Bayes theorem

 $\Pr(NH|\mathbf{D}) = \frac{\pi(NH)}{\pi(NH) + \pi(IH)K^{-1}}$

- **Bayes Factor:** $K = \frac{\Pr(\mathbf{D}|NH)}{\Pr(\mathbf{D}|IH)} = e^{-\Delta\chi^2/2}$
 - Provide a single quantity \rightarrow better quantify likelihood of NH vs. IH

CONCLUSIONS

- Some results regarding the pdf of $\Delta \chi^2$, but not applicable to all cases
- Different approaches available: no "right" or "wrong" choices, but important to report the convention used
- Bayesian method gives only **one quan**tity, *i.e.* Pr(MH|**D**), while frequentist gives the compatibility of **both** hierarchies with the data
- Different and complementary information: more accurate analysis reporting both



REFERENCES

[1] X. Qian, et al., Phys. Rev. D 86 113011 [2] E. Ciuffoli, J. Evslin and X.M. Zhang, JHEP 1401 095 [3] Blennow et al., JHEP 1403 028 [4] E. Ciuffoli, NUPHYS2016 arXiv:1704.08043 [hep-ph]

- Depends upon the choice of priors! However very natural choice for MH: $\pi(NH) = \pi(IH) = 0.5$
- Bayesian and frequentist give **different** (and complementary) information!.
- More complete analysis by using both approaches

[5] F. Capozzi, E. Lisi, A. Marrone, PRD89, 013001

[6] S. Algeri, J. Conrad and D.A. van Dyk; MNRAS: Letters, 2016