Electro-Weak and Top Physics © 100 TeV

Michele Selvaggi

CERN

The FCC-hh

- E_{CM} = 100 TeV
- 100 km long
- needs I6T magnets

Access to:

- direct production of heavy states up to m ≈ 40 TeV
- precision SM physics:
 - Higgs potential, self-coupling
 - Higgs, Top, EWK physics in new extreme dynamical regimes (complementary to e⁺e⁻)

Top and EWK rates @ 100TeV

- Top pair production increases by x40 @100TeV, $\sigma(tt) = 30$ nb, at 30 ab⁻¹:
 - $\rightarrow 10^{13}$ tops
 - $\rightarrow 10^{13} \text{W's}$
 - \rightarrow 10¹³ b's , (charge tagged, CPV)
 - \rightarrow 10¹² τ 's (rare decays $\tau \rightarrow 3\mu$, CPV)
- W/Z single production increase by x(5-7) @100 TeV, $\sigma(W/Z) = 1.7 \mu b$
- Multi-top/boson production x(100-1000)
- High statistics can be used to study pure/ boosted samples

Kinematics

- Low p_T physics lies at higher rapidity at 100 TeV
- Make sure detectors cover well these regions
 - → may have to consider dedicated detectors!

Outline

- Boosted Top and EWK bosons (as tools)
- Measurements @100 TeV

Boosted tops, W, Z's @100 TeV

 Boosted 2 body decay from massive object has typical angular size:

$$\Delta R \approx 2 \text{ m / pT}$$

Top quark:

pT = I TeV
$$\rightarrow \Delta R = 0.5$$

pT = I0 TeV $\rightarrow \Delta R = 0.05$

W/Z bosons:

pT = I TeV
$$\rightarrow \Delta R = 0.25$$

pT = I0 TeV $\rightarrow \Delta R = 0.025$

Detector resolution (CMS/FCC):

Tracking
$$\rightarrow \Delta R = 0.002/0.001$$

ECAL $\rightarrow \Delta R = 0.02/0.01$
HCAL $\rightarrow \Delta R = 0.1/0.05$

Hit fundamental "conventional" calorimeter limit at extreme boosts

Hyper boosted Top jets

- Top quark carries colour charge, and undergoes final state radiation
- Soft contamination (UE, ISR, PU) can produce large corrections to the top mass:
 - Scale R \approx m_t / pT
 - Apply grooming (pruning, soft drop, trimming)
 - Use tracking

Hyper boosted W/Z jets

- Color singlets feature little activity around the jet core (unlike QCD)
- Identify W/Z (and H) as "narrow jets"

Hyper boosted W/Z jets

Pierini, 100 TeV SM Report [1607.01831]

Build "isolation" in concentric annuli

$$p_T^i(flow) = rac{\sum\limits_{p \in C_i} p_T^p}{p_T^{jet}}$$

<u>Lesson</u>: exploiting radiation pattern can be more effective than the jet "pronginess"

EWK high energy showers

- EWK showers are important at high energy:
 - $j \rightarrow jW$ can easily fake a top jet (~up to 10%)
- Gauge bosons and scalar can also radiate (not included in Pythia8):
 - can affect boosted top, bottom (yukawa) and vector identification performance
- Unlike QCD showers, EWK showers are directly observable
- Full set of EWK splitting has been worked out and is being implemented as plugin for Pythia8.

Measurements @100 TeV

Top dipole moments (gtt coupling)

Enhance chromoelectric/magnetic contribution by going at p > m₊

Strategy:

- Measure σ (m(tt) > X) at high mass
 - Tag tops with high pT muons:

$$z_{\mu} = \max_{i=1,\dots,n} \frac{p_T(\mu_i)}{p_T(j_i)} \longrightarrow z_{\mu} \gtrsim 0.5$$

At 100 TeV constraints from σ (m(tt) > 10 TeV)

 $\left|d_{A,V}\right|\,\lesssim\,0.0025$

Top - Z coupling

$$\mathcal{L}_{t\bar{t}Z} = e\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,V}^Z + \gamma_5 C_{1,A}^Z \right) + \underbrace{\frac{\mathrm{i}\sigma^{\mu\nu}q_{\nu}}{M_Z} \left(C_{2,V}^Z + \mathrm{i}\gamma_5 C_{2,A}^Z \right)}_{\mathrm{SM}} \right] v(p_{\bar{t}}) Z_{\mu}$$

ttZ production rate increases by x50 @100 TeV

Rontsch, Schulze [1501.05939] $\begin{array}{c} \text{SM} \\ \\ C_{2,V} = C_{2,A} = +0.20 \\ \\ \text{NLO} \\ \\ 0 \quad 100 \quad 200 \quad 300 \quad 400 \quad 500 \\ \\ p_{\mathrm{T},Z}[\mathrm{GeV}] \end{array}$

100 TeV SM Report [1607.01831]

ttZ/ttH as probe for yt

- $\sigma_{ttX}(100 \, \text{TeV}) / \sigma_{ttX}(14 \, \text{TeV}) \approx 50-60$
- Theory uncertainties between ttZ and ttH are highly correlated:
 - production dynamics and radiative corrections (reduced scale dependence)
 - kinematics $(m_H \approx m_Z)$ are similar (reduced PDF uncertainties)
- Can measure $\sigma_{ttZ}/\sigma_{ttH}$ to very high accuracy (production, luminosity unc. cancel out)

	$\sigma(tar{t}H)[ext{pb}]$	$\sigma(t ar{t} Z) [ext{pb}]$	$rac{\sigma(tar{t}H)}{\sigma(tar{t}Z)}$
13 TeV	$0.475^{+5.79\%}_{-9.04\%}{}^{+3.33\%}_{-3.08\%}$	$0.785^{+9.81\%}_{-11.2\%}{}^{+3.27\%}_{-3.12\%}$	$0.606^{+2.45\%+0.525\%}_{-3.66\%-0.319\%}$
100 TeV	$33.9^{+7.06\%}_{-8.29\%}{}^{+2.17\%}_{-2.18\%}$	$57.9^{+8.93\%}_{-9.46\%}_{-2.43\%}$	$0.585^{+1.29\%+0.314\%}_{-2.02\%-0.147\%}$

Top fat C/A jet(s) with R = 1.2, |y| < 2.5, and pT,j > 200 GeV

Mangano, Plehn, Reimitz, Schell, Shao [1507.08169]

 $\Delta y_t/y_t \approx 1\% \text{ within reach} \\ @ 100 \, \text{TeV !}$

(assuming BR(H→bb) is known)

High-Q² Drell Yan

$$\mathcal{L} \supset \frac{1}{\Lambda_S^2} H^{\dagger} W_{\mu\nu} H B_{\mu\nu} + \frac{1}{\Lambda_T^2} |H^{\dagger} D_{\mu} H|^2 + \frac{1}{\Lambda_W^2} (D_{\rho} W_{\mu\nu}^a)^2 + \frac{1}{\Lambda_Y^2} (\partial_{\rho} B_{\mu\nu})^2$$

Dim. 6 operators in SMEFT modify high energy behaviour of EWK gauge boson propagators

Farina, Panico, Pappadopulo, Ruderman, Torre, Wulzer [1609.08157]

$$\Lambda_W \gtrsim 24 \text{ TeV}$$

• neutral: $\delta_{\rm cor} = \delta_{\rm unc} = 2\%$

$$\Lambda_Y \gtrsim 15 \text{ TeV}$$

ullet charged: $\delta_{
m cor} = \delta_{
m unc} = 5\%$ $\Lambda_Y \gtrsim 70 {
m TeV}$

$$\Lambda_W \gtrsim 110 \text{ TeV}$$

$$\Lambda_Y \gtrsim 70 \text{ TeV}$$

$$\frac{\delta\sigma}{\sigma}\propto \frac{q^2}{\Lambda_{W,Y}^2}$$

TGC's in di-boson production

10

 m_{ll} [TeV]

12

14 16 18

 10^{6}

 $N_{\rm events}$ per 10 ab $^{-1}$ 10 $_{2}$ 10 $_{2}$ 10 $_{2}$ 10 $_{2}$

High sensitivity for Owww

→ need ~ strong coupling

Conclusions

- High energy proton machine will produce tens of trillions of tops, W/Z bosons.
- Such high statistics can be used to target unexplored corners of the phase-space (boosted regime)
- Contrary to common belief, high energy proton colliders are suitable for high precision measurement
- Can challenge precision obtained in e+e- machine on observables that receive enhancement at high momentum transfer (.ie W,Y parameters in DY, top dipole moments, VBS, tWb, etc ..)
- Systematic comparison in the SMEFT framework of synergies and complementarity between FCC ee/hh still has to be performed

Thank you