

Contribution ID: 516

Type: Poster Presentation

D^* polarization as a probe to discriminate new physics in $\bar B\to D^*\tau\bar\nu$

The confirmation of excess in R_{D^*} at the LHCb is an indication of lepton flavor non-universality. Various different new physics operators and their coupling strengths, which provide a good fit to R_D , R_{D^*} and q^2 spectra, were identified previously. In this work, we try to find angular observables in $\bar{B} \to D^* \tau \bar{\nu}$ which enable us to distinguish between these new physics operators. We find that D^* polarization fraction $f_L(q^2)$ is a good discriminant of scalar and tensor new physics operators. The change in $\langle f_L(q^2) \rangle$, induced by scalar and tensor operators, is about three times larger than the expected uncertainty in the upcoming Belle measurement.

Experimental Collaboration

Primary author: Prof. UMASANKAR, Sankagiri (Indian Institute of Technology Bombay)

Co-authors: Prof. ALOK, Ashuotsh Kumar (Indian Institute of Technology Jodhpur); Dr KUMAR, Dinesh (University of Rajasthan, Jaipur); Mr KUMBHAKAR, Suman (Indian Institute of Technology Bombay)

Presenter: Prof. UMASANKAR, Sankagiri (Indian Institute of Technology Bombay)

Session Classification: Poster session

Track Classification: Flavour Physics and Fundamental Symmetries