

Contribution ID: 805

Type: Poster Presentation

Rates and CP asymmetries of Charmless Two-body Baryonic $B_{u,d,s}$ Decays

With the experimental evidences of $\overline{B}^0 \to p\overline{p}$ and $B^- \to \Lambda\overline{p}$ decays, it is now possible to extract both tree and penguin amplitudes of the charmless two-body baryonic B decays for the first time. The extracted penguintree ratio agrees with the expectation. Using the topological amplitude approach with the experimental results on $\overline{B}^0 \to p\overline{p}$ and $B^- \to \Lambda\overline{p}$ decay rates as input, predictions on all other $\overline{B}_q \to calBcalB$, calBcalD, calDcalB and calDcalD decay rates, where \mathcal{B} and calD are the low lying octet and decuplet baryons, respectively, are given. It is non-trivial that the results do not violate any existing experimental upper limit. From the analysis it is understandable that why $\overline{B}^0 \to p\overline{p}$ and $B^- \to \Lambda\overline{p}$ modes are the first two modes with experimental evidences. Relations on rates are verified using the numerical results. We note that the predicted $B^- \to p\overline{\Delta^{++}}$ rate is close to the experimental bound, which has not been updated in the last ten years. Direct CP asymmetries of all $\overline{B}_q \to calBcal\overline{B}$, $calBcal\overline{D}$, $calDcal\overline{B}$ and $calDcal\overline{D}$ modes are explored. Relations on CP asymmetries are examined using the numerical results. The direct CP asymmetry of $\overline{B}^0 \to p\overline{p}$ decay can be as large as $\pm 50\%$. The CP asymmetries of $\Delta S = -1$ pure penguin modes are constrained to be of few %. These modes are expected to be sensitive to New Physics contributions and are good candidates to be added to the list of the tests of the Standard Model.

Experimental Collaboration

Primary author:CHUA, Chun-KhiangPresenter:CHUA, Chun-KhiangSession Classification:Poster session

Track Classification: Flavour Physics and Fundamental Symmetries