### Recent results on charmless B-decays at Belle

### Abdul Basith Indian Institute of Technology, Madras (On behalf of the Belle Collaboration)

### EPS Conference on High Energy Physics 5-12 July 2017 Venice, Italy





Abdul Basith Recent results on charmless *B*-decays at Belle

## Outline of the talk

- Experimental overview
- Branching fraction and CP asymmetry in

$$\mathbf{B}^+ \rightarrow \mathbf{K}^+ \mathbf{K}^- \pi^+$$

$$\mathbf{B^0} \rightarrow \pi^{\mathbf{0}} \pi^{\mathbf{0}}$$

• Summary

### KEKB and Belle detector



• Asymmetric  $e^+e^-$  collider at the High Energy Accelerator Research Organization(KEK), Japan

• 8.0 GeV  $e^-$  collides to 3.5 GeV  $e^+$  at the  $\Upsilon(4S)$  resonance

• Collected about 772  $\times 10^6 \ B\bar{B}$  till 2010

• All results covered in this talk are based on the full Belle data set



イロト イ押ト イヨト イヨト

#### Abdul Basith

### Charmless **B** decays

• Almost 99% of the **B** decays are  $\mathbf{b} \rightarrow \mathbf{c}$  transitions Only 1%: charmless and rare  $(\mathbf{b} \rightarrow \mathbf{u}, \mathbf{d}, \mathbf{s})$ 

 $\bullet$  Charmless  ${\bf B}$  decays are sensitive to possible new physics contributions in the 'penguin' loops

• Interference between penguin and tree diagrams can lead to direct CP violation

• Relative weak phase of the two diagrams gives information about angles of the Unitarity Triangle (UT)

• An enhanced value of  ${\cal B}$  and  $A_{\rm CP}$  will be a hint to new physics

◆□ ▶ ◆圖 ▶ ◆ 圖 ▶ ◆ 圖 ▶

### Analysis strategy

 $\bullet$  Use kinematic variables (  $\Delta E$  and  $M_{bc})$  for the signal candidate selection

• Combine event topology variables in a Neural Network or a Fisher discriminant for the continuum  $(e^+e^- o q\bar{q})$  suppression

< ロ > < 同 > < 回 > < 回 > < 回 > <



 $E_B^*$  and  $p_B^*$  are energy and momentum of the B candidate while  $E_{BEAM}^*$  is the beam energy in the  $\Upsilon(4S)$  center-of-mass frame

• Unbinned extended maximum likelihood fit to extract the signal yield

# $B^+ \rightarrow \overline{K^+ K^- \pi^+}$ : Motivation

- Mainly proceeds via  $b \rightarrow u$  tree and  $b \rightarrow d$  penguin diagrams
- No intermediate state observed yet

#### **Previous measurements:**

 $\begin{aligned} \mathcal{B}(K^+K^-\pi^+) &= (5.0\pm0.5\pm0.5)\times10^{-6}\\ \mathcal{A}_{CP} &= -0.123\pm0.017\pm0.012\pm0.007 \end{aligned}$ 

BaBar, PRL 99, 221801 (2007) LHCb, PRD 90, 112004 (2014)

• Unidentified mass spectrum in low  $M_{\rm KK}$  region, and a large local  $A_{\rm CP}$  in the same region

• Final-state interaction may be a contributing factor to CP violation

PLB 726, 337 (2013) PRD 89, 094013 (2014)



< 口 > < 同 > < 臣 > < 臣

#### Abdul Basith

Continuum  $(e^+e^- o q \bar{q})$  process, generic (b o c) and rare (b o u, d, s)B decays

- A neural network is used to combine event shape variables
- Tight requirement on neural network output to reduce 99% of continuum events

0 NN



• Charm veto to reject  $b\to c$  backgrounds after investigating the  ${\rm K^+K^-}$  and  ${\rm K^+\pi^-}$  invariant-mass spectra



#### Abdul Basith

0.24

0.22

0.18

0.16 0.14 0.12

0.08 0.06 0.04 0.02

# $B^+ \rightarrow K^+ K^- \pi^+$ : Fit results





- Signal and  $A_{\rm CP}$  are fitted in  $M_{\rm KK}$  bins

• The overall results are obtained by integrating over the whole  $M_{\rm KK}$  region

• We obtain  $N_{sig} = 715 \pm 48$ 

#### Abdul Basith

### $B^+ \rightarrow K^+ K^- \pi^+$ : Fit results

• Observed an excess similar to LHCb and BaBar in  $M_{\rm KK} < 1.5~{\rm GeV/c^2}$ • Strong evidence for a large CP asymmetry of  $-0.90\pm0.17\pm0.04$  with  $4.8\sigma$  significance for  $M_{\rm KK} < 1.1~{\rm GeV/c^2}$ 



Recent results on charmless B-decays at Belle

イロト イ押ト イヨト イヨト

### $B^+ \rightarrow K^+ K^- \pi^+$ : Fit results

• Overall  $\mathcal{B}$  and  $\mathcal{A}_{CP}$ :

$$\begin{aligned} \mathcal{B}(\mathcal{K}^+\mathcal{K}^-\pi^+) = (5.38\pm0.40\pm0.35)\times10^{-6} \\ \mathcal{A}_{CP} = -0.182\pm0.071\pm0.016 \end{aligned}$$

Table: Signal yield, efficiency, differential branching fraction, and  $\mathcal{A}_{CP}$  for individual  $M_{\rm KK}$  bins

| $M_{\rm K^+K^-}({\rm GeV/c^2})$ | N <sub>sig</sub>          | Eff. (%) | $d\mathcal{B}/dM~(	imes 10^{-7})$ | $\mathcal{A}_{CP}$        |
|---------------------------------|---------------------------|----------|-----------------------------------|---------------------------|
| 0.8-1.1                         | $59.8 \pm 11.4 \pm 2.6$   | 19.7     | $14.0\pm2.7\pm0.8$                | $-0.90 \pm 0.17 \pm 0.03$ |
| 1.1-1.5                         | $212.4 \pm 21.3 \pm 6.6$  | 19.3     | $37.8\pm3.8\pm1.9$                | $-0.16 \pm 0.10 \pm 0.01$ |
| 1.5-2.5                         | $113.5 \pm 26.7 \pm 18.0$ | 15.6     | $10.0\pm2.3\pm1.6$                | $-0.15 \pm 0.23 \pm 0.03$ |
| 2.5-3.5                         | $110.1 \pm 17.6 \pm 4.1$  | 15.1     | $10.0\pm1.6\pm0.5$                | $-0.09 \pm 0.16 \pm 0.01$ |
| 3.5-5.3                         | $172.6 \pm 25.7 \pm 6.87$ | 16.3     | $8.1\pm1.2\pm0.5$                 | $-0.05 \pm 0.15 \pm 0.00$ |

Abdul Basith

Recent results on charmless B-decays at Belle

arXiv:1705.02640

メロト メタト メヨト メヨト

# $B^0 \rightarrow \pi^0 \pi^0$ : Motivation

• Proceeds via  $b \rightarrow u$  tree and  $b \rightarrow d$  penguin diagrams

• Time dependent measurements of  $B \rightarrow \pi \pi$  are sensitive to the UT angle  $\phi_2(\alpha)$ 

• Among the  $B\to\pi\pi$  decays,  ${\cal B}$  and  $A_{\rm CP}$  for  $B^0\to\pi^0\pi^0$  are the least well determined

#### Theory:

•  $\mathcal{B}(B^0 \to \pi^0 \pi^0) < \mathcal{B}(B^0 \to \rho^0 \rho^0)$ (Hsiang-nan Li and Satoshi Mishima. Phys.Rev.D73:114014,2006)

- Same diagrams and stronger coupling to  $\rho^{\rm 0}$ 

• At most 
$$\mathcal{B}(B^0 \to \pi^0 \pi^0) < 1 \times 10^{-6}$$
 (H.L. & SM Phys.Rev.D83:034023,2011)



#### Previous measurements:

- Belle  $\mathcal{B} = (2.3 \pm 0.4 \pm 0.5) \times 10^{-6}$ PRL **94**, 181803(2005) (275 × 10<sup>6</sup>  $B\bar{B}$ )
- Belle  $\mathcal{B} = (1.12 \pm 0.3 \pm 0.1) \times 10^{-6}$ ICHEP 2006 (535 × 10<sup>6</sup> *BB*)
- BaBar  $\mathcal{B} = (1.83 \pm 0.21 \pm 0.13) \times 10^{-6}$ PRD **87**, 052009(2013) (467 × 10<sup>6</sup> BB)

• PDG Average 
$$\mathcal{B} = (1.62 \pm 0.31) imes 10^{-6}$$

イロト イ押ト イヨト イヨト

#### Abdul Basith

# $B^0 \rightarrow \pi^0 \pi^0$ : Fit components

• 3D fit to  $\Delta E$ ,  $M_{bc}$  and  $T_c$  (continuum suppression variable) with four components:

- 1. Signal
- 2. Continuum
- 3.  $B^+ \rightarrow \rho^+ \pi^0$
- 4. Other rare charmless
- Simultaneous fit to 14 bins in the flavor tagging variable (q.r)

•  $T_c$  PDF obtained from analytic anzatz fit to signal MC and a data sideband for continuum

•  $\Delta E$  and  $M_{bc}$  for signal obtained with analytic functions, accounting for correlation due to energy leakage in the calorimeter

# $B^0 \rightarrow \pi^0 \pi^0$ : Fit results

 $\left| \mathcal{B}(B^0 o \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.18) imes 10^{-6} \right| \mathcal{A}_{CP} = +0.14 \pm 0.36 \pm 0.12$ 





 $\begin{array}{c} 5.275 \; {\rm GeV} < {\rm M_{bc}} < 5.285 \; {\rm GeV} \\ -0.15 \; {\rm GeV} < \Delta {\rm E} < 0.05 \; {\rm GeV} \; , \; {\it T_c} > 0.70 \\ \end{array}$ 

#### Abdul Basith

# $B^0 \to \pi^0 \pi^0$ : Constraint on the angle $\phi_2(\alpha)$

•  $\mathcal{B}$  and  $\mathcal{A}_{CP}$  results for  $B^0 \to \pi^0 \pi^0$  are combined with previous Belle results on  $B^0 \to \pi^+ \pi^-$  and  $B^+ \to \pi^+ \pi^0$  to constrain  $\phi_2$  employing isospin relations<sup>[1]</sup>



### Summary

<u>**B**<sup>+</sup> → **K**<sup>+</sup>**K**<sup>-</sup>π<sup>+</sup></u> Submitted for publication (arXiv:1705.02640)  $\mathcal{B}(K^+K^-\pi^\pm) = (5.38 \pm 0.40 \pm 0.35) \times 10^{-6}$  $\mathcal{A}_{CP} = -0.182 \pm 0.071 \pm 0.016$ 

Found strong evidence for a large CP asymmetry of  $-0.90\pm0.17\pm0.03$  with  $4.8\sigma$  significance for  $\rm M_{KK}<1.1~GeV/c^2$ 

**<u>B</u><sup>0</sup>**  $\rightarrow \pi^{0}\pi^{0}$  Submitted for publication (arXiv:1705.02083)

 ${\cal B}(B^0 o \pi^0 \pi^0) = (1.31 \pm 0.19 \pm 0.18) imes 10^{-6}$ 

 ${\cal A}_{CP} = +0.14 \pm 0.36 \pm 0.12$ 

Exclude the UT angle  $\phi_2$  from the range  ${\bf 15.5^\circ} < \phi_2 < {\bf 75^\circ}$  at  ${\bf 95\%}$  confidence level

# Thank you

- \* ロ > \* @ > \* 注 > \* 注 > ・ 注 = \* の < 0

Recent results on charmless B-decays at Belle

Abdul Basith