

Search for CP violation and rare decays in charm sector at Belle

Minakshi Nayak Wayne State University/KEK On behalf of the Belle collaboration

EPS-HEP 2017, Venice Italy July 7th 2017

Talk Outline

- > First measurement of T-odd moments in the decay $D^0 \rightarrow K_s \pi^+\pi^-\pi^0$ PRD 95, 091101(R) (2017)
- > Observation of $D^0 \to \rho^0 \gamma$ and search for CP asymmetry in $D^0 \to \phi \gamma$, $D^0 \to K^{*0} \gamma$, $D^0 \to \rho^0 \gamma$ decay $_{\mbox{PRL 118, 051801 (2017)}}$
- > Measurement of Br and CP asymmetry in D⁰ → K⁰_sK⁰_s decay arxiv:1705.05966
- First search for D⁰ decays to invisible final states. (already covered by Youngjoon Kwon yesterday) PRD 95, 011102(R) (2017)
- > Data set used for all the above analysis: ~1000 fb⁻¹

First measurement of T-odd moments in the decay $D^0 \rightarrow K_{s} \Pi^+ \Pi^- \Pi^0$ PRD 95, 091101(R) (2017)

Motivation:

- > Self conjugate final state, $D^0 \rightarrow K_s \pi^+ \pi^- \pi^0$ has large B.R. of 5.2%. This allows precise test of CP violation
- Previously the decay was studied by MARK III Collaboration with only 140 events using data sample of 9.56 pb⁻¹ Phys. Rev. D 45, 2196 (1992)
- Via CPT theorem, the T-asymmetry in this decays is sensitive to CP violation
- > Measurement is performed via scalar triple product: $C_T = p_{KS}$. $(p_{\pi^+} \times p_{\pi^-})$ for D⁰ and \overline{C}_T for \overline{D}^0

$$A_T = \frac{\Gamma(C_T > 0) - \Gamma(C_T < 0)}{\Gamma(C_T > 0) + \Gamma(C_T < 0)},$$

 $\bar{A}_T = \frac{\Gamma(-C_T > 0) - \Gamma(-C_T < 0)}{\Gamma(-\bar{C}_T > 0) + \Gamma(-\bar{C}_T < 0)}$

> The two asymmetry parameters for D^0 and \overline{D}^0 :

and CP violation sensitive parameter:

$$a_{CP}^{T\text{-odd}} = \frac{1}{2} \left(A_T - \bar{A}_T \right)$$
³

First measurement of T-odd moments in the decay $D^0 \rightarrow K_s \pi^+\pi^-\pi^0$ PRD 95, 091101(R) (2017)

Signal extraction($e^+e^- \rightarrow c\bar{c} \rightarrow XD^* \rightarrow \pi^+_{slow}D^0 \rightarrow K_s \pi^+\pi^-\pi^0$) Two-dimensional unbinned maximum likelihood fit to ΔM ($M_{D^{*+}} - M_{D0}$) and M_{D0} Fit includes a small correlation between the width of ΔM and M_{D0}

First measurement of T-odd moments in the decay $D^0 \rightarrow K_{\Pi}^{+}\pi^{-}\pi^{0}$ prd 95, 091101(R) (2017)

Resu	lt:			
Signal	yield = 7445	509 ±162	2	
$\mathbf{A}_{\mathrm{T}} = \mathbf{(}$	11.60 ± 0.19)%		
A _{CP} (T-	odd) = (-(0.28 ± 1	$38^{+0.23}_{-0.76}$)	x 10 ⁻³

Result consistent with no CP violation, also no evidence for CP violation in various bins of $K_s \pi^+\pi^-\pi^0$ phase space

Bin	Resonance	Invariant mass requirement (MeV/c^2)	$A_T(\times 10^{-2})$	$a_{CP}^{T\text{-odd}}(\times 10^{-3})$
1	$K_S^0 \omega$	$762 < M_{\pi^+\pi^-\pi^0} < 802$	$3.6\pm0.5\pm0.5$	$-1.7 \pm 3.2 \pm 0.7$
2	$K^0_S \eta$	$M_{\pi^+\pi^-\pi^0} < 590$	$0.2\pm1.3\pm0.4$	$4.6\pm9.5\pm0.2$
3	$K^{*-}\rho^+$	$790 < M_{K_{\rm s}^0 \pi^-} < 994$	$6.9\pm0.3^{+0.6}_{-0.5}$	$0.0 \pm 2.0^{+1.6}_{-1.4}$
4	$K^{*+} ho^-$	$610 < M_{\pi^+\pi^0} < 960$ $790 < M_{K_S^0\pi^+} < 994$ $610 < M_{\pi^-0} < 960$	$22.0 \pm 0.6 \pm 0.6$	$1.2 \pm 4.4^{+0.3}_{-0.4}$
5	$K^{*-}\pi^+\pi^0$	$790 < M_{K_{s}^{0}\pi^{-}} < 994$	$25.5\pm0.7\pm0.5$	$-7.1 \pm 5.2^{+1.2}_{-1.3}$
6	$K^{*+}\pi^-\pi^0$	$790 < M_{K_S^0 \pi^+} < 994$	$24.5 \pm 1.0^{+0.7}_{-0.6}$	$-3.9\pm7.3^{+2.4}_{-1.2}$
7	$K^{*0}\pi^+\pi^-$	$790 < M_{K_S^0 \pi^0} < 994$	$19.7\pm0.8^{+0.4}_{-0.5}$	$0.0 \pm 5.6^{+1.1}_{-0.9}$
8	$K^0_S ho^+\pi^-$	$610 < M_{\pi^+\pi^0} < 960$	$13.2\pm0.9\pm0.4$	$7.6\pm 6.1^{+0.2}_{-0.0}$
9	Remainder		$20.5 \pm 1.0^{+0.5}_{-0.6}$	$1.8\pm7.4^{+2.1}_{-5.3}$

Our result constitutes one of the most precise tests of CP violation in the D meson system.

Statistically dominated, sensitivity can be improved by Belle II

Motivation:

- Radiative charm decays dominated by long range non-perturbative processes which enhance the B.F. to O(10⁻⁴) from O(10⁻⁸), obtained from short range processes
- Measurement of Br can be used to test QCD based calculations of long distance dynamics
- Sensitive to New Physics in terms of A_{CP} measurement: SM prediction: O(10⁻³) SM extensions with chromomagnetic dipole operators: up to several % for V = φ , ρ 0 [Phys. Rev. Lett. 109,171801 (2012)]
- Previous measurements: CLEO II : B.F.(D⁰ → ρ⁰γ) < 2.4 × 10 -4 (4.8 fb⁻¹) Phys. Rev. D 58, 092001 (1998)

BELLE : $D^0 \rightarrow \phi \gamma$ first observed (78.1 fb⁻¹) Phys. Rev. Lett. 92, 101803 (2004)

BABAR : B.F.($D^0 \rightarrow \underline{\phi} \gamma$) = (2.78 ± 0.30 ± 0.27) x 10⁻⁵ (387.1 fb⁻¹) : B.F.($D^0 \rightarrow K^{*0}\gamma$) = (2.78 ± 0.30 ± 0.27) x 10⁻⁵ (387.1 fb⁻¹) Phys. Rev. D 78, 071101(R) (2008)

 \succ No $A_{_{CP}}$ measurements yet in $D^0 \rightarrow V \gamma$

Observation of $D^0 \rightarrow \rho^0 \gamma$ and search for CP asymmetry in $D^0 \rightarrow \varphi \gamma$, $D^0 \rightarrow \overline{K^{*0}} \gamma$, $D^0 \rightarrow \rho^0 \gamma$ decay pri 118, 051801 (2017)

Analysis overview:

> B.F. and A_{CP} measured for modes: $D^0 \rightarrow \phi(K^+K^-)\gamma$, $\rho^0(\pi^+\pi^-)\gamma$ and $\overline{K}^{*0}(K^-\pi^+)\gamma$ w.r.t. their normalization modes: $D^0 \rightarrow K^+K^-$, $\pi+\pi^-$, and $K^-\pi^+$ respectively

> B.F. Measurement:
$$\mathcal{B}_{sig} = \mathcal{B}_{norm} \times \frac{N_{sig}}{N_{norm}} \times \frac{\varepsilon_{norm}}{\varepsilon_{sig}}$$

$$\text{ CP asymmetry:} \qquad A_{\text{raw}} = \frac{N(D^0 \to f) - N(\bar{D}^0 \to \bar{f})}{N(D^0 \to f) + N(\bar{D}^0 \to \bar{f})} \qquad A_{\text{RAW}} = A_{\text{CP}} + A_{\text{FB}} + A_{\epsilon}^{\pm}$$
$$\mathcal{A}_{CP}^{\text{sig}} = A_{\text{raw}}^{\text{sig}} - A_{\text{raw}}^{\text{norm}} + \mathcal{A}_{CP}^{\text{norm}}$$

- \succ For Flavor tag and combinatorial bkg suppression: D^0 from $D^{*+} \rightarrow D^0 \pi^+$
- Dedicated π^0 veto: using an artificial neural network;
 The new veto rejects 13% more background than the previous veto at the same signal efficiency of 85%

Observation of $D^0 \rightarrow \rho^0 \gamma$ and search for CP asymmetry in $D^0 \rightarrow \varphi \gamma$, $D^0 \rightarrow \overline{K}^{*0} \gamma$, $D^0 \rightarrow \rho^0 \gamma$ decay pri 118, 051801 (2017)

Signal extraction:

Yield and CP asymmetry extracted from simultaneous unbinned ML fits to $M(D^0)$ and Helicity angle

Results:

Branching fractions: **B.F.** $(D^0 \rightarrow \rho^0 \gamma) = (1.77 \pm 0.30 \pm 0.07) \times 10^{-5}$ (first observation) **B.F.** $(D^0 \rightarrow \phi \gamma) = (2.76 \pm 0.19 \pm 0.10) \times 10^{-5}$ (consistent with world average) **B.F.** $(D^0 \rightarrow K^{*0} \gamma) = (4.66 \pm 0.21 \pm 0.21) \times 10^{-4}$ (3.3 σ above the BABAR measurement)

```
CP asymmetry:

A_{CP}(D^0 \rightarrow \rho^0 \gamma) = +0.056 \pm 0.152 \pm 0.006

A_{CP}(D^0 \rightarrow \phi \gamma) = -0.094 \pm 0.066 \pm 0.001

A_{CP}(D^0 \rightarrow \overline{K}^{*0} \gamma) = -0.003 \pm 0.020 \pm 0.000
```

First measurements! Results consistent with no CP violation, but statistically dominated, sensitivity can be greatly enhanced by Belle II

- > SCS decays (like $D^0 \rightarrow K^0_{s} K^0_{s}$) are of special interest: possibility of interference with NP amplitudes could lead to large nonzero CPV PRD 87 (2013) 014024
- > SM UL of 1.1% for direct CPV in $D^0 \rightarrow K^0_{s} K^0_{s}$ PRD 92 (2015) 054036
- > previous measurements: CLEO : A_{CP}(D⁰ → K⁰_sK⁰_s) = (-23 ± 19)% (13.7 fb⁻¹) PRD 63 (2001), 071101(R) LHCb : A_{CP}(D⁰ → K⁰_sK⁰_s) = (-2.9 ± 5.2 ± 2.2)% (3 fb⁻¹) JHEP 10 (2015) 055 BESIII: B.F.(D⁰ → K⁰_sK⁰_s) = (1.67 ± 0.11 ± 0.11)× 10⁻⁴ (2.93 fb⁻¹) Phys. Lett. B 765 (2017) 231
- > Normalization mode $D^0 \rightarrow K^0_{s} \pi^0$

$$A_{\rm raw} = \frac{N(D^0) - N(\bar{D}^0)}{N(D^0) + N(\bar{D}^0)} = A_{CP} + A_{FB} + A_{\epsilon}^{\pm} + A_{\epsilon}^{K}$$

$$\begin{aligned} A_{CP}(D^0 \to K^0_S K^0_S) &= A_{\rm raw}(D^0 \to K^0_S K^0_S) - \\ &\quad A_{\rm raw}(D^0 \to K^0_S \pi^0) + \\ &\quad A_{CP}(D^0 \to K^0_S \pi^0) + A^K_\epsilon \end{aligned}$$

Asymmetry originating from different strong interaction of K⁰ and K⁰bar mesons with detector material, $A_{E}^{K} = (-0.11 \pm 0.01)\%$ [PRD 84 (2011) 111501]

Both measurements are the most precise ones available for $D^0 \rightarrow K_s K_s$ mode.

10

- Highly suppressed in SM with an expected Br of order 10⁻³⁰ PRD 82, 034005 (2010)
- > Under different DM models the Br could reach up to 10^{-15} PLB 651, 374 (2007) PR 117, 75 (1985)
- Event reconstruction relies on an earlier technique by belle JHEP 09, 139 (2013)

Charm tagger method to select inclusive D⁰ sample, which allows identification of D⁰ decays to invisible particles $e^+e^- \rightarrow c\bar{c} \rightarrow D^{(*)}_{\mathrm{tag}} X_{\mathrm{frag}} \bar{D}^{*-}_{\mathrm{sig}}$ with $\bar{D}^{*-}_{\mathrm{sig}} \rightarrow \bar{D}^0_{\mathrm{sig}} \pi^-_s$

$$M_{D^0} \equiv M_{\rm miss}(D_{tag}^{(*)}X_{frag}\pi_s^-)$$

- > Signal extraction: 2D fit between $M(D^0)$ and E_{ECL}
- > Signal yield = $-6.3^{+22.5}_{-21.0}$
- > Br(D⁰ \rightarrow invisible) < 9.4 \times 10⁻⁵ @ 90% C.L.

First measurement!

Summary:

> T-odd moments in the decay $D^0 \rightarrow K_s \pi^+ \pi^- \pi^0$:

First measurement of T-odd moments in the decay $D^0 \rightarrow K_s \pi^+\pi^-\pi^0$. Result consistent with no CP violation, no evidence for CP violation in various bins of $K_s \pi^+\pi^-\pi^0$ phase space.

≻ $D^0 \rightarrow V\gamma$ decay:

 $Br(D^0 \rightarrow \rho^0 \gamma) \rightarrow \text{first observation}, Br(D^0 \rightarrow \phi \gamma) \rightarrow \text{consistent with world average},$ $Br(D^0 \rightarrow K^{*0} \gamma) \rightarrow 3.3\sigma$ above the BABAR measurement. No observation of CP asymmetry in any of these three modes.

> $D^0 \rightarrow K^0_{s} K^0_{s}$ decay:

CP asymmetry consistent with SM. significant improvement compared to the previous measurement of CLEO and LHCb Collaborations. Br consistent with the world average. 2.3σ away from a recent BESIII measurement.

> D⁰ decays to invisible final states:

The first search for D⁰ decays into invisible final states is performed. No significant signal is found with Br < 9.4 × 10^{-5} @ 90% C.L.

BelleII expects 50 ab⁻¹ data by 2024. Rare charm decays with neutral¹² tracks can be performed better.

Thank you!