SUSY contributions in light of recent ϵ'/ϵ

Daiki Ueda

(KEK theory center, SOKENDAI) EPSHEP 2017 Venice, Italy 8th. July 2017 M.Endo,S.Mishima,D.Ueda and K.Yamamoto,Phys.Lett. B762 (2016) 493-497

Introduction

 ϵ'/ϵ : Direct CP-violating observable in $K_L o \pi\pi$

$K_L \to \pi \pi$: CP-violating process

In CP symmetric system

$$CP |K_L\rangle = -|K_L\rangle \qquad CP |\pi\pi\rangle = +|\pi\pi\rangle$$

Introduction

The standard model prediction

 $(\epsilon'/\epsilon)_{SM} = (1.06 \pm 5.07) \times 10^{-4}$ [T.Kitahara, U.Nierste and P.Tremper]

c.f. [RBC-UKQCD], [A.J.Buras, M.Gorbahn, S.Jager and M.Jamin]

experimental result

 $(\epsilon'/\epsilon)_{exp} = (16.6 \pm 2.3) \times 10^{-4} [NA48, KTeV]$

$$(\epsilon'/\epsilon)_{exp} > (\epsilon'/\epsilon)_{SM}$$
 at 2.9 σ level

Can we explain this discrepancy by SUSY?

Chargino contributions to Z penguin

Z penguin in the SM

Chardino contribution

Chargino contributions to Z penguin

squark mass matrix: $\mathcal{M}_{\tilde{u}}^2 = \operatorname{diag}(m_{\tilde{q}}^2) + m_{\tilde{q}}^2 \begin{pmatrix} 0 & (\delta_{LR}^u)_{ij} \\ (\delta_{RL}^u)_{ij} & 0 \end{pmatrix}$

 $\underbrace{d_{L}}_{\tilde{u}_{L}}^{(\delta_{LR}^{u})_{13}}_{\tilde{u}_{L}} \underbrace{\tilde{t}_{R}}_{\tilde{c}_{L}} \underbrace{(\delta_{LR}^{u})_{23}}_{\tilde{c}_{L}} (\delta_{LR}^{u})_{ij} = \frac{v_{2}(\hat{T}_{U})_{ij}^{*}}{\sqrt{2}m_{\tilde{q}}^{2}}$ $\underbrace{\tilde{W}}_{\tilde{u}_{L}}^{\tilde{u}_{L}} \underbrace{Z}$ $\mathcal{L}_{eff} = Z_{ds} \bar{s}_L \gamma_\mu d_L Z^\mu + \text{h.c.} \quad Z_{ds} = Z_{ds}^{(SM)} + Z_{ds}^{(SUSY)}$ $Z_{ds}^{(SUSY)} \propto (\delta_{LR}^u)_{13}^* (\delta_{LR}^u)_{23} \sim \frac{v_2^2 (\hat{T}_U)_{13} (\hat{T}_U)_{23}^*}{m_{\tilde{z}}^4}$ $(\epsilon'/\epsilon)_{SUSY} \propto \operatorname{Im}\left(Z_{ds}^{(SUSY)}\right)$ 6

Large $|(\hat{T}_U)_{ij}|$ destabilizes electroweak vacuum(**EWV**)

scalar potential come from soft SUSY breaking terms $V_{scalar} \supset (\hat{T}_U)_{i3} H_2^0 \tilde{u}_{iL} \tilde{t}_R$

EWV can decay to Color-Charge Breaking vacuum(CCBV

(Lifetime of EW vacuum) > (Age of the universe)

Decay rate of the vacuum per unite volume $\Gamma/V = A \exp\left(-S_E\right)$ f decay rate is sensitive to S_E

at semiclassical level $A \sim (100 {\rm GeV})^4 - (10 {\rm TeV})^4$ from dimensional analysis

(Lifetime of EW vacuum) > (Age of the universe) fUsing current Hubble constant $H_0 \sim 1.5 \times 10^{-42} {
m GeV}$

$$S_E > 400$$

We can get the upper bound of trilinear coupling

upper limit of trilinear coupling

 $m_{\tilde{q}} \equiv m_{\tilde{Q}_{i}} = m_{\tilde{U}_{3}}$ $m_{\tilde{w}} = m_{\tilde{q}} - \dots$ $= 1TeV - \dots$ $= 2TeV - \dots$ $= 3TeV - \dots$

SUSY contributions can explain the discrepancy if the SUSY masses are smaller than 4-6TeV

Other constraints is satisfied For example, ϵ , EDM, Δm_d , $\mathcal{B}(b \to s\gamma)$

6

In ϵ contribution from $(\bar{s}\gamma_{\mu}P_{L}d)(\bar{s}\gamma^{\mu}P_{R}d)$ is enhanced

chiral enhancement

But chargino contribution is suppressed by small yukawa

Correlation with $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$

 $K_L \to \pi^0 \nu \bar{\nu}$: CP-violating process

 $CP \left| \nu \bar{\nu} \right\rangle = - \left| \nu \bar{\nu} \right\rangle \quad CP \left| \pi^0 \right\rangle = - \left| \pi^0 \right\rangle \quad CP \left| \pi^0 \nu \bar{\nu} \right\rangle = \left| \pi^0 \nu \bar{\nu} \right\rangle$

In CP symmetric system

$$CP |K_L\rangle = -|K_L\rangle$$

Correlation with $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$

 $\mathcal{B}\left(K_L \to \pi^0 \nu \bar{\nu}\right) \propto \left(\operatorname{Im}\left(X^{(SM)}\right) + \operatorname{Im}\left(Z^{(SUSY)}_{ds}\right)\right)^2 \propto \left(Y^{(SM)} + (\epsilon'/\epsilon)_{SUSY}\right)^2$

is about less than 60% of the SM prediction

Conclusion

- SUSY contributions can explain the discrepancy if the SUSY masses are smaller than 4-6 TeV
- The current discrepancy implies that $\mathcal{B}(K_L \to \pi^0 \nu \bar{\nu})$ is about less than 60% of the SM prediction.
- Other SUSY contributions are future works.

 \bar{K}^0 is antiparticle of K^0 $CP\left|K^0\right>=\left|\bar{K}^0\right>$

Kaon

CP eigenstate

$$|K_{+}\rangle = \frac{1}{2} \left(|K^{0}\rangle + |\bar{K}^{0}\rangle \right) \quad CP |K^{0}\rangle = |\bar{K}^{0}\rangle$$
$$|K_{-}\rangle = \frac{1}{2} \left(|K^{0}\rangle - |\bar{K}^{0}\rangle \right)$$

$$CP \left| K_{+} \right\rangle = + \left| K_{+} \right\rangle$$

$$CP \left| K_{-} \right\rangle = - \left| K_{-} \right\rangle$$

Kaon

If system is CP invariant [CP, H] = 0

 $i\frac{d}{dt}\left|\Phi(t)\right\rangle = H\left|\Phi(t)\right\rangle \qquad \left|\Phi(t)\right\rangle = a(t)\left|K^{0}\right\rangle + b(t)\left|\bar{K}^{0}\right\rangle$

 $|K_+\rangle$, $|K_-\rangle$ are also mass eigenstates.

$$|K_S\rangle \equiv K_+ = \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle + \left| \bar{K}^0 \right\rangle \right) \quad |K_L\rangle \equiv K_- = \frac{1}{\sqrt{2}} \left(\left| K^0 \right\rangle - \left| \bar{K}^0 \right\rangle \right)$$

 $|K_S\rangle, |K_L\rangle$:mass eigenstate

CP violation in Kaon

If system is CP invariant

$$|K_S\rangle = |K_+\rangle \to |\pi\pi\rangle$$

$$|K_L\rangle = |K_-\rangle \to |\pi\pi\rangle$$

$$CP \left| \pi \pi \right\rangle = \left| \pi \pi \right\rangle$$

 $K_L \rightarrow \pi \pi$ is observed from experiment. **CP is violated.**

CP violation in Kaon

If CP is violated $[CP, H] \neq 0$

mass eigenstates are not CP eigenstates.

mass eigenstates K_L, K_S are linear combination of K_+, K_-

CP violation originate from mixing

Indirect CP violation

If CP violation is only indirect $\eta_{00} = \eta_{\pm} = \epsilon_K$

$$\epsilon_K \equiv \frac{2\eta_{\pm} + \eta_{00}}{3}$$

$$\begin{array}{l} \mathsf{CP} \text{ violation in Kaon} \\ |K_S\rangle = |K_+\rangle + \epsilon_K |K_-\rangle & |K_L\rangle = |K_-\rangle + \epsilon_K |K_+\rangle \\ \downarrow & \mathsf{CP} \text{ violating interaction} \\ |\pi\pi\rangle:\mathsf{CP} \text{ even} & |\pi\pi\rangle:\mathsf{CP} \text{ even} \\ \mathbf{Direct} \ \mathsf{CP} \text{ violation} \\ \eta_{\pm} \equiv \frac{\langle \pi^+\pi^-|\mathcal{H}|K_L\rangle}{\langle \pi^+\pi^-|\mathcal{H}|K_S\rangle} & \eta_{00} \equiv \frac{\langle \pi^0\pi^0|\mathcal{H}|K_L\rangle}{\langle \pi^0\pi^0|\mathcal{H}|K_S\rangle} \\ \eta_{\pm} \neq \eta_{00} \\ \epsilon' \equiv \frac{\eta_{\pm} - \eta_{00}}{2^4} \\ \end{array}$$

Measurement of ϵ'/ϵ

$$\operatorname{Re}\frac{\epsilon'}{\epsilon} \simeq \frac{1}{6} \frac{|\eta_{\pm}|^2 - |\eta_{00}|^2}{|\eta_{\pm}|^2} = \frac{1}{6} \left(1 - \frac{\frac{\mathcal{B}(K_L \to \pi^0 \pi^0)}{\mathcal{B}(K_S \to \pi^0 \pi^0)}}{\frac{\mathcal{B}(K_L \to \pi^+ \pi^-)}{\mathcal{B}(K_S \to \pi^+ \pi^-)}} \right)$$

We can measure this value.

$$\eta_{\pm} \equiv \frac{\langle \pi^{+} \pi^{-} | \mathcal{H} | K_{L} \rangle}{\langle \pi^{+} \pi^{-} | \mathcal{H} | K_{S} \rangle} \qquad \eta_{00} \equiv \frac{\langle \pi^{0} \pi^{0} | \mathcal{H} | K_{L} \rangle}{\langle \pi^{0} \pi^{0} | \mathcal{H} | K_{S} \rangle}$$

NA48 and KTeV measured it

$$(\epsilon'_K/\epsilon_K)_{exp} = (16.6 \pm 2.3) \times 10^{-4}$$
 [PDG]

 ϵ_K'/ϵ_K

$$\epsilon' \equiv \frac{\eta_{\pm} - \eta_{00}}{3} \quad \eta_{00} \equiv \frac{\langle \pi^0 \pi^0 | \mathcal{H} | K_L \rangle}{\langle \pi^0 \pi^0 | \mathcal{H} | K_S \rangle} \quad \eta_{\pm} \equiv \frac{\langle \pi^+ \pi^- | \mathcal{H} | K_L \rangle}{\langle \pi^+ \pi^- | \mathcal{H} | K_S \rangle}$$

$$\left\langle (\pi\pi)_I | \mathcal{H} | K^0 \right\rangle = A_I e^{i\delta_I} \qquad \left\langle (\pi\pi)_I | \mathcal{H} | \bar{K}^0 \right\rangle = A_I^* e^{i\delta_I}$$

Isospin : I = 0, 2

$$\epsilon'_{K} \simeq \frac{1}{\sqrt{2}} \frac{\omega}{\operatorname{Re}A_{0}} \left(\operatorname{Im}A_{0} - \frac{1}{\omega} \operatorname{Im}A_{2} \right) \exp \left(i \left(\frac{\pi}{2} + \delta_{2} - \delta_{0} \right) \right)$$
$$\omega \equiv \frac{\operatorname{Re}A_{2}}{\operatorname{Re}A_{0}}$$

$$\epsilon_{K}^{\prime}/\epsilon_{K}$$

$$\epsilon_{K}^{\prime} \simeq \frac{1}{\sqrt{2}} \frac{\omega_{exp}}{(\operatorname{Re}A_{0})_{exp}} \left(\operatorname{Im}A_{0} - \frac{1}{\omega_{exp}}\operatorname{Im}A_{2}\right) \exp\left(i\left(\frac{\pi}{2} + \delta_{2} - \delta_{0}\right)_{exp}\right)$$

$$\epsilon_{K} = |\epsilon_{K}| \exp\left(i\operatorname{Tan}^{-1}\frac{2\Delta M_{K}}{\Delta\Gamma_{K}}\right)$$

$$\overleftarrow{}$$
acidental cancellation occurs

We evaluate below quantity

$$\frac{\epsilon'_K}{\epsilon_K} \simeq \frac{1}{\sqrt{2}|\epsilon_K|} \frac{\omega_{exp}}{(\text{Re}A_0)_{exp}} \left(\text{Im}A_0 - \frac{1}{\omega_{exp}} \text{Im}A_2 \right)$$

The SM prediction of ϵ'_K/ϵ_K

The standard model prediction

 $(\text{Re}(\epsilon'_K/\epsilon_K))_{SM} = (1.38 \pm 6.90) \times 10^{-4} [\text{RBC-UKQCD}]$ $(\text{Re}(\epsilon'_K/\epsilon_K))_{SM} = (1.9 \pm 4.5) \times 10^{-4} [\text{Buras et al.}]$ $(\text{Re}(\epsilon'_K/\epsilon_K))_{SM} = (1.06 \pm 5.07) \times 10^{-4} [\text{Kitahara et al.}]$

The SM prediction of ϵ_K'/ϵ_K

$$\frac{\epsilon'_K}{\epsilon_K} \simeq \frac{1}{\sqrt{2}|\epsilon_K|} \frac{\omega_{exp}}{(\text{Re}A_0)_{exp}} \left(\text{Im}A_0 - \frac{1}{\omega_{exp}}\text{Im}A_2\right)$$

They determine ImA_0 , ImA_2 by lattice QCD calculation.

The SM prediction of ϵ'_K/ϵ_K

Buras et al. A.J. Buras, M. Gorbahn, S. J[°]ager and M. Jamin, JHEP 11 (2015) 202 [arXiv:1507.06345]

 $\frac{\epsilon'_K}{\epsilon_K} \simeq \frac{1}{\sqrt{2}|\epsilon_K|} \frac{\omega_{exp}}{(\text{Re}A_0)_{exp}} \left(\text{Im}A_0 - \frac{1}{\omega_{exp}}\text{Im}A_2\right)$ $\mathcal{H}_{eff} = \frac{G_F}{\sqrt{2}} \sum_{i=1}^{10} C_i(\mu) Q_i(\mu) \qquad A_I = \left\langle (\pi \pi)_I | \mathcal{H}_{eff} | K^0 \right\rangle$ $(\operatorname{Re}A_0)_{exp}, (\operatorname{Re}A_2)_{exp}$ ↓ determine $\langle Q_2(\mu) \rangle_0, \langle Q_2(\mu) \rangle_2$ by using suitable relation $\langle Q_{4,10}(\mu) \rangle_0, \langle Q_{1,9,10}(\mu) \rangle_2$ $\langle Q_i(\mu) \rangle_I \equiv \langle (\pi\pi)_I | Q_i(\mu) | K^0 \rangle$

The SM prediction of ϵ'_K/ϵ_K Kitahara et al.

$$\frac{\epsilon'_K}{\epsilon_K} \simeq \frac{1}{\sqrt{2}|\epsilon_K|} \frac{\omega_{exp}}{(\text{Re}A_0)_{exp}} \left(\text{Im}A_0 - \frac{1}{\omega_{exp}} \text{Im}A_2 \right)$$

In addition to Buras's result they estimate subleading hadron matrix elements

$$\langle Q_3 \rangle_0, \langle Q_5 \rangle_0, \langle Q_7 \rangle_0$$

by using lattice QCD result.

Models solving ϵ'/ϵ anomaly

Several new physics models have been studied to explain ϵ'/ϵ anomaly **MSSM**

chargino Z penguin [M.Endo, S.Mishima, D.Ueda and K.Yamamoto, PLB762(2016)493]

gluino Z penguin [M.Tanimoto and K.Yamamoto, PTEP(2016)no.12,123B02]

gluino box [T.Kitahara, U.Nierste and P.Tremper, PRL117(2016)no.9, 091802 A.Crivellin, G.D'Ambrosio, T.Kitahara and U.Nierste, 1703.05786]

Vector-like quarks [C.Bobeth, A.J.Buras, A.Celis and M.Jung, JHEP1704(2017)079]

Little Higgs Model with T-parity [M.Blanke, A.J.Buras and S.Recksiegel, EPJ.C76 (2016)no.4,182]

331 model[A.J.Buras and F.De Fazio, JHEP 1603(2016)010 & JHEP1608 (2016) 115]

Right handed current [V.Cirigliano, W.Dekens, <u>J.de</u> Vries and E.Mereghetti, PLB 017)1 S.Alioli, V.Cirigliano, W.Dekens, <u>J.de</u> Vries and E.Mereghetti, JHEP1705 (2017)086]

Chargino contributions to Z penguin soft SUSY breaking terms

$$-\mathcal{L}_{soft} \supset (\hat{m}_{\tilde{Q}})_{ij}^{2} \tilde{u}_{iL}^{*} \tilde{u}_{jR} + (\hat{m}_{\tilde{u}}^{2})_{ij} \tilde{u}_{iR}^{*} \tilde{u}_{jR} + \left((\hat{T}_{U})_{ij} H_{2}^{0} \tilde{u}_{iL} \tilde{u}_{jR} + \text{h.c.} \right)$$

$$\uparrow$$
trilinear term

EW symmetry breaking: $H_1^0 \rightarrow \frac{v_1}{\sqrt{2}}$ $H_2^0 \rightarrow \frac{v_2}{\sqrt{2}}$ $H_1^0 \langle H^0 \rangle = \frac{v}{\sqrt{2}}$ $\frac{v}{\sqrt{2}}\hat{T}$ \hat{T} \hat{q}_R^* \tilde{q}_L \rightarrow $\tilde{q}_L^{--+-+--}\tilde{q}_R^*$

small yukawa and heavy higgsino suppress charging contribution.

Heavy higsino suppress chargino contribution.

Heavy higgsino suppress charging contribution. $(\epsilon'/\epsilon)_{SUSY}$ is sensitive to wino mass.