

HEP 2017, 6th of July 2017

New Results from LUX

Alex Lindote

LIP and University of Coimbra

on behalf of the LUX

collaboration

LUX Details

- 49 cm diameter by 59 cm height dodecagonal chamber
 - * PTFE walls to maximize light collection
 - * 48 cm drift length
- * 370 kg of liquid xenon
 - * 250 kg in the active region
- * 122 Hamamatsu R8778 PMTs
 - * in two arrays
- Ultra-low background Ti cryostat
- * Xenon continuously recirculated to maintain purity (~250 kg/day)
- Chromatographic separation reduced Kr content to ~4 ppt
- * Inside 300 tonne water tank
 - * all external backgrounds subdominant

Sanford UG Research Lab

(Low background assay)

Temporary Clean Room

Open January 2011

Le<u>ad,</u> SD

4850 feet deep (1478 m)

LUX Timeline

Calibrations — 83mKr

- Injected ~weekly in the gas system
- Quickly mixes in the xenon, uniform distribution
- * 2 IT electrons in quick succession
 - * $32.2 \text{ keV} + 9.4 \text{ keV} (T_{1/2} = 154 \text{ ns})$
 - Mono energetic for our standard analysis
- * 1.8 hours half-life
 - Clears the system in a few hours
- * Used for:
 - * Position reconstruction
 - * Electron lifetime
 - * S1 and S2 position corrections

Calibrations - Electron Recoils

- * Tritium has a low energy β decay (Q = 18.6 keV, $\langle E \rangle$ = 5.9 keV)
 - * ideal to study the response of the detector to electron recoils
 - * used to determine the ER band
- Long half-life (12.3 yr)
 - * CH₃T removed by purity system ($T_{1/2} \sim 6$ hours)
- Injected every three months

Phys. Rev. D 93, 072009 (2016)

Calibrations – Nuclear Recoils

- DD neutron generator outside water tank
 (2.45 MeV neutrons)
- NR calibrations every 3 months and at different heights
- * Double scatters used for Q_y analysis (0.7 74 keV)
- * Single scatters used for L_y analysis and NR band (1.1 74 keV)

Parameter Space

Backgrounds in 2014-16 Run

- * LUX is a low-background detector
 - * Furthermore, we already understand the backgrounds from the previous run
 - * Unlike the 2013 run, ¹²⁷Xe is no longer present

Background source	Expected number below NR median	
External gamma rays	1.51 ± 0.19	
Internal betas	1.2 ± 0.06	In the bulk, leakage at all energies
Rn plate out (wall background)	8.7 ± 3.5	Low energy, but limited to the edge of the detector*
Accidental S1-S2 coincidences	0.34 ± 0.10	T (1 1 11 (1
Solar ⁸ B neutrinos (CNNS)	0.15 ± 0.02	In the bulk, at low energy in the NR band

~ 0.3 single scatter neutrons, not included in PLR

* - Our likelihood analysis includes position information, so these have a low likelihood as signal

Salting

WIMP-Search Data

Final WS Data – 332 live-days

SI Exclusion Limit – 332 live-days

- 4x improvement at high mass
- Minimum of 0.22 zb @ 50 GeV
- Brazil bands
 show 1- and 2sigma range of
 sensitivities,
 based on
 random BGonly
 experiments

SI Exclusion limit – 95+332 live-days

SI Exclusion limit – 95+332 live-days

SD Exclusion Limits – 95+332 live-days

WIMP-proton

An improvement of a factor of six compared with the results from the 2013 run

Axions and ALPs in the 2013 Data

- * Solar axion spectral shape: convolution of solar axion flux (JCAP 12, 008 (2013), $g_{Ae} = 10^{-12}$) with axio-electric cross-section on xenon
- Resolution and efficiency modelled with NEST

- * ALPs expected to be at rest within the galaxy
- * Axio-electric absorption leads to ERs with kinetic energy of the ALP mass: sharp feature, smeared by detector resolution

Backgrounds from 2013 data thoroughly studied and well understood PLR analysis with 4 observables: S1, $log_{10}(S2)$, r and z

Limits for Axions and ALPs

Axions

ALPs

LUX 2013 excludes $g_{Ae} > 3.5 \times 10^{-12}$ (90% CL)

- $m_A > 0.12 \text{ eV/c}^2 \text{ (DFSZ model)}$
- $m_A > 36.6 \text{ eV/c}^2 \text{ (KSVZ model)}$

LUX 2013 excludes $g_{Ae} > 4.2x10^{-13}$ (90% CL) across the range 1-16 keV/ c^2 in ALP mass

arXiv:1704.02297 PRL 118, 261301 (2017)

Summary

- * LUX had 4 extremely productive years, and is still producing new physics results
 - * World leading WIMP-search experiment since 2013
 - * Made significant improvements in the calibration of xenon detectors
- * Various additional analyses on-going, to explore the full physics potential
 - * EFT, annual modulation, inelastic DM, etc.
- * Accumulated expertise used in the design of LZ
 - Next talk by W. Lorenzon

LUX on display at the SURF visitors center

luxdarkmatter.org

The LUX collaboration

Berkeley Lab / UC Berkeley

Bob Jacobsen	PI, Professor
Murdock Gilcrease	Senior Scientist
Kevin Lesko	Senior Scientist
Michael Witherell	Lab Director
Peter Sorensen	Divisional Fellow
Simon Fiorucci	Project Scientist
Evan Pease	Postdoc
Daniel Hogan	Graduate Student
Kelsey Oliver-Mallory	Graduate Student

Brown University

Richard Gaitskell	PI, Professor
Junhui Liao	Postdoc
Samuel Chan	Graduate Student
Dongqing Huang	Graduate Student
Casey Rhyne	Graduate Student
Will Taylor	Graduate Student
James Verbus	Ex-Postdoc

University of Edinburgh

Alexander Murphy	PI, Professor
Paolo Beltrame	Ex-Research Fellow
Maria F. Marzioni	Graduate Student
Tom Davison	Graduate Student

Adam Bernstein	PI, RED group leader
Kareem Kazkaz	Physicist
Jingke Xu	Postdoc
Brian Lenardo	Graduate Student

Wing To PI, Assistant Professor

Imperial College London

Henrique Araujo	PI, Professor
Tim Sumner	Professor
Alastair Currie	Ex-Postdoc
Adam Bailey	Ex-Graduate Student
Khadeeja Yazdani	Ex-Graduate Student
Nellie Marangou	Graduate Student

Dan Akerib	PI, Professor
Thomas Shutt	PI, Professor
Tomasz Biesiadzinski	Research Associate
Christina Ignarra	Research Associate
Alden Fan	Research Associate
Wei Ji	Graduate Student
TJ Whitis	Graduate Student

LIP Coimbra

Isabel Lopes	PI, Professor
José Pinto de Cunha	Assistant Professor
Vladimir Solovov	Senior Researcher
Alexandre Lindote	Postdoc
Francisco Neves	Auxiliary Researcher
Claudio Silva	Research Fellow
Paulo Bras	Graduate Student

Carmen Carmona	PI, Assistant Professor
Emily Grace	Postdoc

SD Mines

Xinhua Bai	PI, Professor
Douglas Tiedt	Graduate Studen

SDSTA / Sanford Lab

David Taylor	Senior Engineer
Markus Horn	Research Scientist

Matthew Szydagis	PI, Assistant Professor
Cecilia Levv	Postdoc

Jack Genovesi Research Assistant

Robert Webb	PI, Professor
Paul Terman	Graduate Student

Berkeley

Daniel Mckinsey	PI, Professor
Ethan Bernard	Project Scientist
Elizabeth Boulton	Graduate Student
Junsong Lin	Postdoc
Brian Tennyson	Graduate Student
Lucie Tvrznikova	Graduate Student
Vetri Velan	Graduate Student

UCDAVIS UNIVERSITY OF CALIFORNIA

UNIVERSITY OF CALIFORNIA	
Mani Tripathi	PI, Professor
Aaron Manalaysay	Project Scientist
James Morad	Ex-Graduate Student
Sergey Uvarov	Ex-Graduate Student
Jacob Cutter	Graduate Student
Dave Hemer	Senior Machinist

Kimberly Palladino	PI, Assistant Professor
Shaun Alsum	Graduate Student
Rachel Mannino	Postdoc

UC SANTA BARBARA

Harry Nelson	PI, Professor
Sally Shaw	Postdoc
Scott Haselschwardt	Graduate Student
Curt Nehrkorn	Graduate Student
Melih Solmaz	Graduate Student
Dean White	Engineer
Susanne Kyre	Engineer

≜∐ University College London

Chamkaur Ghag	PI, Professor
Jim Dobson	Postdoc
Umit Utku	Graduate Student

Carter Hall	PI, Professor
Jon Balajthy	Graduate Student

UMassAmherst

Scott Hertel	PI, Assistant Professo
Christ Nedlik	Graduate Student

Frank Wolfs	PI, Professor
Wojtek Skulski	Senior Scientist
Eryk Druszkiewicz	Electrical Engineer
Dev Aashish Khaitan	Graduate Student
Mongkol Moongweluwan	Graduate Student

University of Sheffield

Vitaly Kudryavtsev	Reader, Particle Physic
Elena Korolkova	Research Associate
David Woodward	Research Associate
Peter Rossiter	Graduate Student

Dongming Mei	PI, Professor
--------------	---------------

Backup

First Run Reanalysis

- * Reanalysis of 2013 data (95 live-days)
- Using calibration results, improved low mass sensitivity

S2 Coordinates

- Field shaping rings help ensure the uniformity of the field
- A small radial component pushes electrons inwards
- * Reconstructed radius at the surface is smaller than real radius
- * S2 coordinates are squeezed relatively to real coordinates
- * Kr is uniform and can be used to estimate this effect

COMSOL model of the field

Grid conditioning

- * In the 2013 run, extraction field efficiency was 50%
- Voltages were limited due to light production from the grids
 - * thought to be from small sharp defects in the wires
- * Grid conditioning: raising voltage above threshold for discharges and allow current to be drawn for long periods
 - * ablates features on the wire surfaces
- Result:
 extraction efficiency raised to 75%

Grid Conditioning — Side Effects

- Significant increase in the radial field component
- Consistent with charging up of the PTFE walls

* Wall position slowly varies with time

The measured wall radius is not axially

symmetric

Modelling the Field

- * 3-D model constructed in the COMSOL Multiphysics® FEM simulation software.
- * Charges are added (non-uniformly) to the walls and the 3-D field is calculated.
- * The 3D field map is combined with the known field dependence on the electron drift speed to obtain a mapping between "real space" and "S2 space" coordinates.
- * Results are compared to the observed 83m Kr distribution, and the charge densities are iterated until a best-fit is obtained.
- * Charge is concentrated in the upper portion of the PTFE walls

Calibration data allows for robust calculation of fiducial volume

$$Fiducial\ Mass = 251\ kg \times \frac{Num.\ evts.\ passing\ fiducial\ cut}{Num.\ evts.\ total}$$

Dealing with a Varying Field

- * How to deal with a field that varies in **space** and **time**?
 - * Divide the run in *M* time bins
 - * Divide the detector in *N* vertical sections
 - * In each of the *MxN* segments, consider a uniform detector model for ER and NR response (*i.e.* constant applied field and other detector parameters)
 - * In the end, 4x4 segments were used 16 independent detectors (a compromise between field uniformity and calibration data statistics)
 - * NEST used to model the S1 and S2 response in each of the 16 detectors

Detector Calibrations

Efficiency for NR Events

Profile Likelihood Ratio Analysis

- * The data in the upper-half of the ER band were compared to the model (plot at right) to assess goodness of fit.
- * Data are compared to models in an un-binned, 2-sided profile-likelihoodratio (PLR) test.
- * 5 un-binned PLR dimensions:
 - * Spatial: r, ϕ , drift-time (raw-measured coordinates)
 - Energy: S1 and log10(S2)
- * 1 binned PLR dimension:
 - * Event date

Position corrections

- Size of the S1 depends on the location of the event (due to geometrical light collection), and S2 (due to electronegative impurities)
- Normally, one develops a geometrical correction factor by flat fielding a monoenergetic source.
- However, a spatially varying E-field ALSO affects S1 and S2 sizes, but differently for every particle type and energy.

E. Aprile *et al.* PRL **97** (2006) 081302, astro-ph/0601552

Position corrections

- Our strategy is:
 - Disentangle position effects from field effects.
 - Apply a correction to account for position effects only.
- 83mKr has two decays close in time. The ratio of the first-to-second S1 pulse area depends on field alone. This allows us to measure the component of variation due to applied field alone.

A.Manalaysay et al., Rev.Sci.Instrum. 81 (2010) 073303, 0908.0616

WIMP-Search Data

WS Data — Pathological Events

Post-Unsalting Quality Cuts

- * After unsalting the data, we revisited all the events below the ER band
- * Two populations of rare pathological events were identified
 - * Events A and B have 80% of their S1 light in a single top edge PMT
 - * Event C has time structure consistent with a gas scintillation event
- Cuts for these pathologies were developed on DD and CH3T calibration data.
- Flat signal acceptance of 98.5% with both cuts applied

Wall-surface backgrounds

- ²³⁸U late chain plate-out on PTFE surfaces survives as ²¹⁰Pb and its daughters (mainly ²¹⁰Bi and ²¹⁰Po).
- Betas and ²⁰⁶Pb recoils travel negligible distance, but they can be reconstructed some distance from the wall as a result of position resolution (especially for small S2s).
- These sources can be used to define the position of the wall in measured coordinates, for the 4 data bins and any combination of drift-time and φ.

• The boundary of the fiducial volume is defined at 3 cm from the observed wall in S2 space and for a drift time

between 50 and 300 µs.

