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¢ 122 Hamamatsu R8778 PMTs

[.UX Details

+ 49 cm diameter by 59 cm height

dodecagonal chamber

* PTFE walls to maximize light collection
+ 48 cm drift length

» 370 kg of liquid xenon
+ 250 kg in the active region

* In two arrays
* Ultra-low background Ti cryostat

Xenon continuously recirculated to
maintain purity (~250 kg/day)

Chromatographic separation reduced Kr
content to ~4 ppt

Inside 300 tonne water tank
* all external backgrounds subdominant
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[LUX Timeline
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alibrations — ¢°™Kr

83mKr, 4 - 8 us drift

Injected ~weekly in the gas system

Quickly mixes in the xenon, uniform
distribution

2 IT electrons in quick succession
+ 32.2keV + 9.4 keV (T, = 154 ns)
* Mono energetic for our standard
analysis

1.8 hours half-life

# Clears the system in a few hours

Used for:

+ Position reconstruction
+ Electron lifetime
# 51 and S2 position corrections
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Calibrations - Electron Recoils

# Tritium has a low energy 3 decay (Q = 18.6 keV, <E>=5.9 keV)

* ideal to study the response of the detector to electron recoils

+ used to determine the ER band

+ Long half-life (12.3 yr)

“ CH3T removed by purity system (T, ~6 hours)

* Injected every three months
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Calibrations — Nuclear Recoils

* DD neutron generator outside water tank 1ol i + i Iovni'zait'i(')lrllv-
(2.45 MeV neutrons) S
'_Q "
# NR calibrations every 3 months and at different o I
>

heights

* Double scatters used for Q, analysis (0.7 - 74 keV)

+ Single scatters used for L, analysis and NR band 1o}
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Backgrounds in 2014-16 Run

* LUX is a low-background detector

* Furthermore, we already understand the backgrounds from the previous run

# Unlike the 2013 run, '*Xe is no longer present

Background Expected number

source below NR median

External gamma 151+ 019
rays

Internal betas 1.2 + 0.06

Rn plate out
(wall background) 8.7 +3.5

Accidental S1-S2

coincidences 0.34 £ 0.10
Solar 8B neutrinos
(CNNS) 0.15 +0.02

~ 0.3 single scatter neutrons,
not included in PLR

These are figures of merit only,

<~ e do a5D likelihood analysis
(51, 10g(S2), R, z, ¢)

o

= In the bulk, leakage at all energies

:l_ Low energy, but limited to
the edge of the detector”

= In the bulk, at low energy in the NR band

* - Our likelihood analysis includes position
information, so these have a low likelihood as signal
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Traditional blinding hides the signal region completely

Very often one is also blind to rare
backgrounds

33 keVnr
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We employ a

technique where
fake signal events
(“salt”) are injected
into the data stream [
Not sim! B
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WIMP-Search Data
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Final WS Data — 332 live-days
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+ 4x improvement

S| Exclusion Limit — 332 live-days

at high mass

Minimum of
0.22 zb @ 50
GeV

Brazil bands
show 1- and 2-
sigma range of
sensitivities,
based on
random BG-
only

experiments

WIMP-nucleon cross section ( zb )
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SI Exclusion limit — 95+332 live-days
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SI Exclusion limit — 95+332 live-days
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SD Exclusion Limits — 95+332 live-days
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Axions and ALPs in the 2013 Data
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1=y Massless solar axion

e LUX expected spectrum

Counts/kg/day

+ Resolution and efficiency modelled with NEST
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« ALPs expected to be at rest within the galaxy

Iog1 0820

* Axio-electric absorption leads to ERs with
kinetic energy of the ALP mass: sharp
feature, smeared by detector resolution

10 20 30 40 50 60 70
S1c [detected photons]

Backgrounds from 2013 data thoroughly studied and well understood

PLR analysis with 4 observables: S1, l0g10(52), ¥ and z
17



|imits for Axions and Al.Ps
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LUX 2013 excludes g > 3.5x10-12 (90% CL) LUX 2013 excludes g, > 4.2x10-13 (90% CL)

ma > 0.12 eV/c2 (DFSZ model)
ma > 36.6 eV/c?2 (KSVZ model)
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across the range 1-16 keV/c? in ALP mass

arXiv:1704.02297

PRL 118, 261301 (2017)



https://arxiv.org/abs/1704.02297
https://journals.aps.org/prl/pdf/10.1103/PhysRevLett.118.261301
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Summary

* LUX had 4 extremely productive years, and is
still producing new physics results

+ World leading WIMP-search experiment since 2013

* Made significant improvements in the calibration of
xenon detectors

* Various additional analyses on-going, to explore
the full physics potential

* EFT, annual modulation, inelastic DM, etc.

* Accumulated expertise used in the design of LZ
+ Next talk by W. Lorenzon

LUX on display at the
SURF visitors center




o
Q
&
U
=
©
&
a7
—
©
O
x
=



http://luxdarkmatter.org
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« Reanalysis of 2013 data (95 live-days) &

# Using calibration results, improved

10

log [S2(phd)]

First Run Reanalysis

low mass sensitivity
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S2 Coordinates

Field shaping rings help ensure the uniformity of the field

COMSOL model of the field

A small radial component pushes electrons inwards 0 T T A S A o i

0

Reconstructed radius at the surface is smaller than real radius || 2w

ash |

S2 coordinates are squeezed relatively to real coordinates
83m

. . . . 40 -
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Grid conditioning

» In the 2013 run, extraction field
efficiency was 50%

* Voltages were limited due to light

production from the grids
* thought to be from small sharp defects
in the wires

+ (Grid conditioning: raising voltage above
threshold for discharges and allow

current to be drawn for long periods
+ ablates features on the wire surfaces

+ Result:

extraction efficiency raised to 75%
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Drift time [us]

Grid Conditioning — Side Effects

* Significant increase in the radial field = : S
+ Wall position slowly varies with time
component

S Th 11 . S . 11
» Consistent with charging up of the PTFE e measured wall radius is not axially

symmetric
walls L 0
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Modelling the Field
+ 3-D model constructed in the COMSOL 50_
Multiphysics® FEM simulation software. N

* Charges are added (non-uniformly) to the

5000

2000

1000

| g

walls and the 3-D field is calculated. ¥ 1soo =

5 £

“ The 3D field map is combined with the " N %"

known field dependence on the electron G
drift speed to obtain a mapping between 10 100

“real space” and “S2 space” coordinates.

* Results are compared to the observed
Ky distribution, and the charge densities

are iterated until a best-fit is obtained. Calibration data allows for robust

: . calculation of fiducial volume
* Charge is concentrated in the upper

p()rti()n of the PTFE walls Fidich Moe - ik Num. evts. passing fiducial cut

Num. evts. total
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Dealing with a Varying Field

+ How to deal with a field that varies in space and time?

+ Divide the run in M time bins
<+ Divide the detector in N vertical sections

* In each of the MxN segments, consider a uniform detector model for
ER and NR response (i.e. constant applied field and other detector
parameters)

* In the end, 4x4 segments were used — 16 independent detectors
(a compromise between field uniformity and calibration data statistics)

* NEST used to model the S1 and S2 response in each of the 16 detectors

http://nest.physics.ucdavis.edu

28
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Detector Calibrations
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Eificiency for NR Events

Assume efficiency is zero below 1.1 keV
(lowest Ly measurement)

1
S2 detection

[—
-

Efficiency

S1 detection
102

Golden event

10-3 N H i 1 iii il i 1 I 11'2
1 10 10

Nuclear Recoil Energy (keV)
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Profile Likelithood Ratio Analysis

The data in the upper-half of the ER
band were compared to the model

(plot at right) to assess goodness of fit.

Data are compared to models in an
un-binned, 2-sided profile-likelihood-
ratio (PLR) test.

5 un-binned PLR dimensions:
+ Spatial: r, ¢, drift-time
(raw-measured coordinates)
“ Energy: S1 and log10(52)

1 binned PLR dimension:

+ Event date
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Dark-matter results from 332 new live days of LUX data

Position corrections

e Size of the S1 depends on the location of the
event (due to geometrical light collection), and
S2 (due to electronegative impurities)

 Normally, one develops a geometrical
correction factor by flat fielding a mono-

energetic source.

* However, a spatially varying E-field ALSO
atfects S1 and S2 sizes, but differently for

every particle type and energy.
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Dark-matter results from 332 new live days of LUX data

Position corrections

® Our strategy is:

» Disentangle position effects from field

effects.

» Apply a correction to account for position

effects only.

e 83mKr has two decays close in time. The
ratio of the first-to-second S1 pulse area
depends on field alone. This allows us to
measure the component of variation due to

applied field alone.
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WIMP-Search Data
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WS Data — Pathological Events
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Post-Unsalting Quality Cuts

After unsalting the data, we revisited all the events below the ER band

Two populations of rare pathological events were identified

* Events A and B have 80% of their S1 light in a single top edge PMT
= Event C has time structure consistent with a gas scintillation event

Cuts for these pathologies were developed on DD and CH3T calibration data.

Flat signal acceptance of 98.5% with both cuts applied
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y at surface (cm)

Wall-surface backgrounds 37

e 238U late chain plate-out on PTFE surfaces survives as 21°Pb

and its daughters (mainly 21°Bi and 21°Po). Fiducial

boundary
* Betas and 2°°Pb recoils travel negligible distance, but they

can be reconstructed some distance from the wall as a ‘”1(1)88
result of position resolution (especially for small S2s). g 10:
i
* These sources can be used to define the position of the wall Ly
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