Implications of Strict Gauge Invariance for Particle Spectra and Precision Observables

Axel Maas with
Larissa Egger and René Sondenheimer

NAWI Graz Natural Sciences

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs, W-W

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Why does perturbation theory work?

Strict Gauge Invariance

- Physical spectrum: Observable particles
- Peaks in (experimental) cross-sections
- Elementary fields depend on the gauge
- Cannot be observable
- Gauge-invariant states are composite
- Higgs-Higgs, W-W, Higgs-Higgs-W etc.

- Why does perturbation theory work?
- Test: Mass spectrum

Mass relation - Higgs

- Mass spectrum can be measured on the lattice

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Mas etal, 12-16]
- Perturbative description possible

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Mas etal, 12-16]
- Perturbative description possible
- Coincidence?

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Mas etal, 12-16]
- Perturbative description possible
- Coincidence? No.

Gauge-invariant perturbation theory

[Fröhlich et al. PLB 80

1) Formulate gauge-invariant operator

Gauge-invariant perturbation theory

[Fröhlich et al. PLB 80

1) Formulate gauge-invariant operator 0^{+}singlet: $\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle$

Gauge-invariant perturbation theory

[Fröhlich et al. PLB 80

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \boldsymbol{\eta}(y)\right\rangle+O(g, \lambda)
\end{gathered}
$$

4) Compare poles on both sides

Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound
state

$$
\begin{aligned}
& \left.\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

4) Compare poles on both sides

Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory

Bound state

$$
\begin{aligned}
& \left.\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
& +\left\langle\eta^{+}(x) \eta(y)\right\rangle\left\langle\eta^{+}(x) \eta(y)\right\rangle+O(g, \lambda)
\end{aligned}
$$

$2 \times$ Higgs mass: Scattering state
4) Compare poles on both sides

Gauge-invariant perturbation theory

1) Formulate gauge-invariant operator

$$
0^{+} \text {singlet: }\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle
$$

2) Expand Higgs field in fluctuations $h=v+\eta$

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

3) Standard perturbation theory Bound state mass

Higgs
mass
4) Compare poles on both sides

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Maas et al., '12-'16]
- Perturbative description possible
- Coincidence? No. fribhlich etal::80)

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Maas et al., '12-'16]
- Perturbative description possible
- Coincidence? No. [Froblich etal::80)

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Works also for the W/Z

Mass relation - Higgs

- Mass spectrum can be measured on the lattice
- Mass of the scalar bound state and Higgs same [Maas et al., '12-'16]
- Perturbative description possible
- Coincidence? No. [FFoblich etal::80

$$
\begin{gathered}
\left\langle\left(h^{+} h\right)(x)\left(h^{+} h\right)(y)\right\rangle=c+v^{2}\left\langle\eta^{+}(x) \eta(y)\right\rangle \\
+v\left\langle\eta^{+} \eta^{2}+\eta^{+2} \eta\right\rangle+\left\langle\eta^{+2} \eta^{2}\right\rangle
\end{gathered}
$$

- Same poles to leading order
- Fröhlich-Morchio-Strocchi (FMS) mechanism
- Works also for the W/Z
- But: Physical state is a custodial triplet!
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left\langle\left(h_{i a}^{+} f_{a}\right)(x)^{+}\left(h_{i b}^{+} f_{b}\right)(y)\right\rangle \stackrel{h=v+\eta}{\approx}\left\langle f_{a}^{+}(x) f_{a}(y)\right\rangle+O(\eta)
$$

Flavor

- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left\langle\left(h^{+} f_{a}\right)(x)^{+}\left(h_{i b}^{+} f_{b}\right)(y)\right\rangle \stackrel{h=v+\eta}{\approx}\left\langle f_{a}^{+}(x) f_{a}(y)\right\rangle+O(\eta)
$$

- Gauge-invariant state
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left.\left\langle\left(h_{a}^{+} f_{a}\right)(x)^{+}\left(h_{i}^{+} f_{b}\right)(y)\right\rangle^{h=v+\eta} \stackrel{l_{a}^{+}}{\approx}(x) f_{a}(y)\right\rangle+O(\eta)
$$

- Gauge-invariant state, but custodial doublet
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left\langle\left(h^{+} f_{a}^{+}\right)(x)^{+}\left(h_{i}^{+} f_{b}\right)(y)\right\rangle^{h=v+\eta} \stackrel{l^{2}}{\approx}\left\langle f_{a}^{+}(x) f_{a}(y)\right\rangle+O(\eta)
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Flavor has two components
- Global SU(3) generation
- Local SU(2) weak gauge (up/down distinction)
- Same argument: Weak gauge not observable
- Replaced by bound state - FMS applicable

$$
\left\langle\left(h^{+} f_{a}^{+}\right)(x)^{+}\left(h_{i}^{+} f_{b}\right)(y)\right\rangle^{h=v+\eta} \stackrel{l_{a}}{\approx}\left\langle f_{a}^{+}(x) f_{a}(y)\right\rangle+O(\eta)
$$

- Gauge-invariant state, but custodial doublet
- Yukawa terms break custodial symmetry
- Different masses for doublet members
- Test requires precision measurement

How events looks like (LEP/ILC)

- Collision of bound states

How events looks like (LEP/ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Collision of bound states - 'constituent' particles

How events looks like (LEP/ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Collision of bound states - 'constituent' particles
- Higgs partners just spectators
- Similar to pp collisions

How events looks like (LEP/ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact?

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle$

How events looks like (LEP/ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle$
- Ordinary contribution

How events looks like (LEP/ILC)

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle$
- Ordinary contribution
- Modification of ordinary contribution

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu^{-}-\mathrm{H}$ bound state
$\mu^{+}-H$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle$
- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state
- More contributions...

How events looks like (LEP/ILC)

$e^{-}-H$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? Gauge-invariant perturbation theory!
$\langle h e h e \mid h \mu h \mu\rangle=\langle e e \mid \mu \mu\rangle+\langle\eta \eta\rangle\langle e e \mid \mu \mu\rangle+\langle e e\rangle\langle\eta \eta \mid \mu \mu\rangle+\ldots$
- Ordinary contribution
- Modification of ordinary contribution
- Higgs as initial state
- More contributions...complicated

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons

How events looks like (LEP/ILC)

$\mathrm{e}^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs

How events looks like (LEP/ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
- Fragmentation 100\% efficient - like for quarks

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
- Fragmentation 100\% efficient - like for quarks
- Higgs heavy
- Not visible at LEP

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
- Fragmentation 100\% efficient - like for quarks
- Higgs heavy
- Not visible at LEP
- No data for PDFs available

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

- Description of impact? PDF-type language!
- Interacting particles either electrons or Higgs
- Fragmentation 100\% efficient - like for quarks
- Higgs heavy
- Not visible at LEP
- No data for PDFs available \rightarrow model: 2.5\% Higgs

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu^{-}-\mathrm{H}$ bound state
$\mu^{+}-\mathrm{H}$ bound state

Z-H-H bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

$$
\text { Final state }-\mu-\mathrm{b}-\mathrm{t}
$$

How events looks like (ILC)

$e^{-}-H$ bound state

Z-H-H bound state
$\mu-\mathrm{H}$ bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

$$
\text { Final state }-\mu-\mathrm{b}-\mathrm{t}
$$

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state

$$
\text { Final state }-\mu-\mathrm{b}-\mathrm{t}
$$

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state

$\mathrm{e}^{+}-\mathrm{H}$ bound state

How events looks like (ILC)

$e^{-}-\mathrm{H}$ bound state
$\mu-\mathrm{H}$ bound state

Z-H-H bound state
$\mu^{+}-\mathrm{H}$ bound state
$\mathrm{e}^{+}-\mathrm{H}$ bound state
Final state $-\mu-\mathrm{b}-\mathrm{t}$

Summary

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- FMS mechanism: Success of perturbation theory

Introduction: 1610.04188 These results: 1701.02881

Summary

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- FMS mechanism: Success of perturbation theory
- Higgs admixture to many states
- Small effect...but may be testable!
- Must be accounted for in new physics searches
- Similar considerations for pp : Watch $\mathrm{pp} \rightarrow \overline{\mathrm{t}} \mathrm{t}$

Introduction: 1610.04188 These results: 1701.02881

Summary

- Observable spectrum must be gauge-invariant
- In non-Abelian gauge theories: Bound states
- FMS mechanism: Success of perturbation theory
- Higgs admixture to many states
- Small effect...but testable! Affect searches
- Similar considerations for pp : Watch $\mathrm{pp} \rightarrow \overline{\mathrm{t}} \mathrm{t}$
- Qualitative impact beyond the standard model

Introduction: 1610.04188 These results: 1701.02881

