## UV Properties of Higher Dímensional

 Operators in Higgs Effective Field Theories from Hidden SymmetriesAndrea Quadrí<br>INFN Sez. di Milano<br>based on A. Q. Int.J.Mod.Phys. A32 (2017) no.16, 1750089<br>arXiv:1610.00150

EPS HEP2017 - Venice, 5-12 July 2017

## Probing BSM Physics: <br> Higgs Effective Field Theories

Operators of higher dimension are added to the SM Lagrangian without violating the symmetries of the theory

$$
\mathcal{L}_{\mathrm{eff}}=\mathcal{L}_{\mathrm{SM}}+\sum_{i} \frac{c_{i}^{(5)}}{\Lambda} \mathcal{O}_{i}^{(5)}+\sum_{i} \frac{c_{i}^{(6)}}{\Lambda^{2}} \mathcal{O}_{i}^{(6)}+\sum_{i} \frac{c_{i}^{(7)}}{\Lambda^{3}} \mathcal{O}_{i}^{(7)}+\sum_{i} \frac{c_{i}^{(8)}}{\Lambda^{4}} \mathcal{O}_{i}^{(8)}+\cdots
$$

$c$ are the Wilson coefficients, $\Lambda$ is some large energy scale

## UV Properties of HEFTs

HEFTs are renormalizable in the modern sense $\grave{a}$ la Gomis-Weinberg, i.e.:

- Power-counting renormalizability is lost
- Physical Unitarity (cancellation of ghost states) guaranteed by BRST symmetry \& Slavnov-Taylor identities
- Froissart bound usually not respected

In general all possible terms allowed by symmetry must be included in an EFT approach

## One-loop Anomalous Dimensions in the HEFTs

However a tour de force computation of one-loop anomalous dimensions in general HEFTs involving dim. six operators
has revealed surprising cancellations.
R.Alonso, E.Jenkins, A.Manohar, M.Trott
arXiv:1308.2627, arXiv:1310.4838, arXiv:1312.2014 , arXiv:1409.0868
Not all mixings in principle allowed by the symmetries do indeed arise at one loop level.

## Holomorphy

Basic idea: holomorphic operators do not mix with anti-holomorphic and non-holomorphic operators.

True at the one-loop level
(up to some breaking proportional to Yukawa couplings) on the S-matrix elements.
C.Cheung and C.Shen, arXiv: 1505.01844

## Off-shell UV Patterns in HEFTs of $\Phi^{\dagger} \Phi$

The subclass of HEFT generated by higher-dimensional operators involving powers of $\Phi^{\dagger} \Phi$ and ordinary derivatives thereof only has some peculiar UV properties.

## Use $\Phi^{\dagger} \Phi$ (after spontaneous symmetry breaking) as a new dynamical variable.

Some additional symmetries become apparent.

## Extra Fields and the Scalar Constraint

$$
\begin{gathered}
\int d^{4} x\left[\frac{1}{v}\left(X_{1}+X_{2}\right)\left(\square+2 \lambda v^{2}\right)\left(\frac{1}{2} \sigma^{2}+v \sigma+\frac{1}{2} \phi_{a}^{2}-v X_{2}\right)-\frac{1}{2}\left(M^{2}-2 \lambda v^{2}\right) X_{2}^{2}\right] \\
\Phi=\frac{1}{\sqrt{2}}\binom{i \phi_{1}+\phi_{2}}{\sigma+v-i \phi_{3}} \\
\mathrm{SU}(2) \text { doublet } \quad X_{2} \quad \mathrm{SU}(2) \text { singlet }
\end{gathered}
$$

A suitable additional BRST symmetry ensures that the physical degrees of freedom are unchanged.

## Equations of Motion for the Auxiliary Field

$$
\frac{\delta S}{\delta X_{1}}=\frac{1}{v}\left(\square+2 \lambda v^{2}\right)\left(\frac{1}{2} \sigma^{2}+v \sigma+\frac{1}{2} \phi_{a}^{2}-v X_{2}\right)=\frac{1}{v}\left(\square+2 \lambda v^{2}\right) \frac{\delta S}{\delta \bar{c}^{*}}
$$

The e.o.m. is satisfied by the constraint

$$
\begin{aligned}
X_{2} & =\frac{1}{2 v} \sigma^{2}+\sigma+\frac{1}{2 v} \phi_{a}^{2} \\
& =\Phi^{\dagger} \Phi-\frac{v^{2}}{2}
\end{aligned}
$$

## On-shell Equivalence with the Standard Formulation

By substituting the e.o.m. solution for the singlet field in the classical action one gets back the ordinary quartic potential

$$
\begin{gathered}
\left.S\right|_{\text {on-shell }}=\int d^{4} x\left[\frac{1}{2} \partial^{\mu} \sigma \partial_{\mu} \sigma+\frac{1}{2} \partial^{\mu} \phi_{a} \partial_{\mu} \phi_{a}-\frac{1}{2} \frac{M^{2}}{v^{2}}\left(\frac{1}{2} \sigma^{2}+v \sigma+\frac{1}{2} \phi_{a}^{2}\right)^{2}\right] \\
\text { with coupling constant }
\end{gathered}
$$

$$
\lambda=\frac{1}{2} \frac{M^{2}}{v^{2}}
$$

right sign of the quartic potential needed to ensure stability from the sign of the mass term, in turn fixed by the requirement of the absence of tachyons

## Dangereous Interactions for Renormalizability

The model contains derivative interactions of the schematic form

## $\chi \square \chi^{2}$

i.e. an operator of dimension 5 .

## Renormalizability?

## More symmetries needed

## Propagators

The quadratic part is diagonalized by $\sigma=\sigma^{\prime}+X_{1}+X_{2}$

$$
\begin{aligned}
& \Delta_{\sigma^{\prime} \sigma^{\prime}}=\frac{i}{p^{2}}, \quad \Delta_{\phi_{a} \phi_{b}}=\frac{i \delta_{a b}}{p^{2}}, \quad \Delta_{\bar{c} c}=\frac{i}{p^{2}} \\
& \Delta_{X_{1} X_{1}}=-\frac{i}{p^{2}}, \quad \Delta_{X_{2} X_{2}}=\frac{i}{p^{2}-M^{2}} .
\end{aligned}
$$

The derivative interaction only depends on $X=X_{1}+X_{2}$ whose propagator has an improved UV behaviour

$$
\Delta_{X X}=\frac{i M^{2}}{p^{2}\left(p^{2}-M^{2}\right)}
$$

## Functional identities \& Renormalization

## Xı equation

$$
\frac{\delta \Gamma}{\delta X_{1}}=\frac{1}{v}\left(\square+2 \lambda v^{2}\right) \frac{\delta \Gamma}{\delta \bar{c}^{*}}
$$

$\mathrm{X}_{2}$ equation $\&$ shift symmetry $\delta X_{1}(x)=\alpha(x), \quad \delta X_{2}(x)=-\alpha(x)$

$$
\frac{\delta \Gamma}{\delta X_{2}}=\frac{1}{v}\left(\square+2 \lambda v^{2}\right) \frac{\delta \Gamma}{\delta \bar{c}^{*}}+\left(\square+2 \lambda v^{2}\right)\left(X_{1}+X_{2}\right)-\left(M^{2}-2 \lambda v^{2}\right) X_{2}-v \bar{c}^{*}
$$

## BSM Extensions: dim. 6 operators

The $\mathrm{X}_{2}$ equation is not the most general functional symmetry holding true for the vertex functional.
The breaking term on the R.H.S. of the shift symmetry stays linear in the quantum fields even if one adds a kinetic term for the scalar singlet

$$
\int d^{4} x \frac{z}{2} \partial^{\mu} X_{2} \partial_{\mu} X_{2}
$$

Upon integration over the auxiliary field this is equivalent to the addition of the dimension-six operator

$$
\int d^{4} x \frac{z}{v^{2}} \partial_{\mu} \Phi^{\dagger} \Phi \partial^{\mu} \Phi^{\dagger} \Phi
$$

## The X2-equation in the presence of a cubic interaction

## $g_{6} X_{2}^{3}$

One needs one more external source $L$ to define the X 2 -equation in the presence of a cubic interaction

$$
\int d^{4} x L X_{2}^{2}
$$

The X2-equation becomes

$$
\begin{aligned}
\frac{\delta \Gamma}{\delta X_{2}}= & \frac{1}{v}\left(\square+2 \lambda v^{2}\right) \frac{\delta \Gamma}{\delta \bar{c}^{*}}+3 g_{6} \frac{\delta \Gamma}{\delta L} \\
& +\left(\square+2 \lambda v^{2}\right)\left(X_{1}+(1-z) X_{2}\right)-\left(M^{2}-2 \lambda v^{2}\right) X_{2}-v \bar{c}^{*}
\end{aligned}
$$

valid to all orders in the loop expansion

## Mapping on the HEFT



The mapping works as follows:

- replace all 1-PI insertions of $\mathrm{X}_{1}$ with insertions of the constraint ext. source through the X . functional equation
- eliminate $X_{1}$ and $X_{2}$ in terms of the components of the scalar $\operatorname{SU}(2)$ Higgs doublet through their e.o.m.
- the resulting functional is conjectured to be the off-shell 1-PI vertex functional of the HEFT

Paper in preparation

## Checks on the two and three-point off-shell amplitudes

Example of the three-point sigma amplitude
Xinsertions give contributions vanishing on-shell

$$
\Gamma_{X_{1} \ldots}=\frac{1}{v}\left(\square+m^{2}\right) \Gamma_{\bar{c}^{*} \ldots}^{x_{1}} \quad X_{2}=\left.\right|_{\text {e.o.m. }} \sigma+\frac{1}{2 v} \sigma^{2}+\ldots
$$

X2 amplitudes yield the full g6-dependence On-shell the g6-dependent part is confined into the three-point $\times 2$ amplitude in the mass (diagonal) basis

Checked the correspondence of the g6-dep. terms off-shell

## UV divergences in vertex functions

Again controlled by the X2- and X1-equations

> More complicated relations involving external sources insertions

The latter have better UV properties than the field X2

Valid off-shell. Disentangle the SM part from the BSM contributions in an algebraic way (counterpart of diagrammatic separation)

## Outlook

- HEFTs based on powers of $\Phi^{\dagger} \Phi$ and ordinary derivatives thereof have some nice UV properties rooted in some functional identities which become transparent if one uses the field $\mathrm{X}_{2}$
- Some applications: off-shell operator mixing, consistent set of higher dimensional operators, resummation


## Back-up slides

## BRST implementation of the on-shell constraint

Off-shell there is one more scalar field $\mathrm{X}_{1}$. What about this field? Physical or unphysical?
BRST symmetry (it does not originate from gauge invariance)

$$
\begin{aligned}
& s X_{1}=v c, \quad s c=0, \quad s \sigma=s \phi_{a}=s X_{2}=0 \\
& s \bar{c}=\frac{1}{2} \sigma^{2}+v \sigma+\frac{1}{2} \phi_{a}^{2}-v X_{2}
\end{aligned}
$$

Ghost action
Invariance under the nilpotent
BRST symmetry

$$
S_{g h o s t}=-\int d^{4} x \bar{c} \square c . \quad \text { formally associated with a } \dot{U}(1) \text { constr group }
$$

