Predictions for Production and Decay of the Pseudoscalar Glueball from the Witten-Sakai-Sugimoto Model

Frederic Brünner, Anton Rebhan

Institute for Theoretical Physics TU Wien, Vienna, Austria

EPS-HEP VENICE 2017

(4月) (日) (日) (日) (1000)

Ever elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}} \sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}} \sim 2.4 \,\, {\rm GeV} \\ m_{0^{-+}} \sim 2.6 \,\, {\rm GeV} \end{array}$

. . .

Morningstar & Peardon hep-lat/9901004

- 4 同 6 4 日 6 4 日 6

Ever elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}} \sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}} \sim 2.4 \,\, {\rm GeV} \\ m_{0^{-+}} \sim 2.6 \,\, {\rm GeV} \\ \ldots \end{array}$

Morningstar & Peardon hep-lat/9901004

Interactions of glueballs still unclear:

- Are glueballs broad or narrow?
- Do they mix with $q\bar{q}$ strongly or weakly?
- \rightarrow no conclusive identification of any glueball in meson spectrum

(本間)》 소문》 소문》 (月日)

Ever elusive: Glueballs

Spectrum of *bare* glueballs (prior to mixing with $q\bar{q}$ states) more or less known from lattice:

 $\begin{array}{l} m_{0^{++}} \sim 1.7 \,\, {\rm GeV} \\ m_{2^{++}} \sim 2.4 \,\, {\rm GeV} \\ m_{0^{-+}} \sim 2.6 \,\, {\rm GeV} \\ \cdots \end{array}$

Morningstar & Peardon hep-lat/9901004

Interactions of glueballs still unclear:

- Are glueballs broad or narrow?
- Do they mix with $q\bar{q}$ strongly or weakly?

\rightarrow no conclusive identification of any glueball in meson spectrum

most discussed lowest 0^{++} candidates:

narrow $f_0(1500)$ or $f_0(1710)$ vs. very broad background ("red dragon") various phenomenological models describe $f_0(1500)$ or $f_0(1710)$ alternatingly as \sim 50-70% or \sim 75-90% glue

[G and two isoscalar $q\bar{q}$ states $u\bar{u} + d\bar{d}$ and $s\bar{s}$ can be shared by $f_0(1370)$, $f_0(1500)$, $f_0(1710)$]

Even more elusive: Pseudoscalar glueball

Pseudoscalar glueball (\tilde{G}) :

- $\bullet\,$ closely related to η' and the $U(1)_A$ problem
- in 1980: first glueball candidate the isoscalar pseudoscalar $\iota(1440),$ now listed as two states $\eta(1405)$ and $\eta(1475)$ in PDG
- together with $\eta(1295) \Rightarrow$ a supernumerary state beyond the first radial excitations of the η and η' mesons, with $\eta(1405)$ singled out as glueball candidate
- BUT: lattice predicts $m(\tilde{G}) \sim 2.6 \text{ GeV} ! \Rightarrow$ Still to be discovered indeed: evidence for three η states between 1.2 and 1.5 GeV under dispute $(\eta(1405) \text{ and } \eta(1475) \text{ could after all be one state } \eta(1440); \text{ also } \eta(1295) \text{ sometimes questioned})$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 のの()

Even more elusive: Pseudoscalar glueball

Pseudoscalar glueball (\tilde{G}) :

- $\bullet\,$ closely related to η' and the $U(1)_A$ problem
- in 1980: first glueball candidate the isoscalar pseudoscalar $\iota(1440),$ now listed as two states $\eta(1405)$ and $\eta(1475)$ in PDG
- together with $\eta(1295) \Rightarrow$ a supernumerary state beyond the first radial excitations of the η and η' mesons, with $\eta(1405)$ singled out as glueball candidate
- BUT: lattice predicts $m(\tilde{G}) \sim 2.6 \text{ GeV} ! \Rightarrow$ Still to be discovered indeed: evidence for three η states between 1.2 and 1.5 GeV under dispute $(\eta(1405) \text{ and } \eta(1475) \text{ could after all be one state } \eta(1440); \text{ also } \eta(1295) \text{ sometimes questioned})$

Seeking help from closest (top-down) holographic model of (large- N_c) QCD: the Witten-Sakai-Sugimoto model

 $\label{eq:Qualitative} Qualitative + quantitative estimates of glueball decay pattern:$

- K. Hashimoto, C.-I. Tan, S. Terashima, PRD77 (2008) 086001
- F. Brünner, D. Parganlija, AR, PRD91 (2015) 106002
- F. Brünner, AR, PRL115 (2015) 131601; PRD92 (2015) 121902
- F. Brünner, AR, PLB770 (2017) 124

Witten model: Holographic nonsupersymmetric QCD

E. Witten, Adv. Theor. Math. Phys. 2, 505 (1998):

Type-IIA string theory with $N_c \rightarrow \infty D4$ branes dual to 4 + 1-dimensional super-Yang-Mills theory

supersymmetry completely broken by compactification on "thermal-like" circle $x_4 \equiv x_4 + 2\pi/M_{\rm KK~(Kaluza-Klein)}$

- \bullet antisymmetric b.c. for adjoint fermions: masses $\sim M_{\rm KK}$
- \bullet adjoint scalars not protected by gauge symmetry: also masses $\sim M_{\rm KK}$

 \rightarrow dual to pure-glue YM theory 3+1-dimensional at scales $\ll M_{\rm KK}$

but supergravity approximation needs weak curvature, cannot take limit $M_{\rm KK} \to \infty$

Glueballs: Constable & Myers 1999; Brower, Mathur & Tan 2000

- scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} plus exotic scalar modes (discarded by us)
- pseudoscalar glueball from RR 1-form field C_1

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	x	x	x					
$D8/\overline{D8}$	×	×	x	x		x	x	×	х	x

(日) (周) (王) (王) (王)

Sakai-Sugimoto model: Adding chiral quarks

T. Sakai, S. Sugimoto, Prog. Theor. Phys. 113, 843 (2005) add N_f D8- and $\overline{\text{D8}}$ -branes, separated in x_4 , $N_f \ll N_c$ (probe branes)

	0	1	2	3	4	5	6	7	8	9
D4	x	x	х	x	x					
$D8/\overline{D8}$	×	x	х	x		x	х	x	x	x

4-8, 4- $\overline{8}$ strings \rightarrow fundamental, massless chiral fermions

flavor symmetry $U(N_f)_L \times U(N_f)_R$

spontaneously broken because $D8-\overline{D8}$ have to join in cigar-shaped topology

for now: maximal separation in x_4 (antipodal on x_4 circle): $L=\pi/M_{
m KK}$

Quantitative predictions

• Quite good parameter-free prediction of (axial-)vector meson mass pattern!

Other predictions depend on value of 't Hooft coupling λ at scale $M_{\rm KK}$:

Matching

•
$$m_{\rho} \approx 776 \text{ MeV} \text{ fixes } M_{\text{KK}} = 949 \text{ MeV} (\Rightarrow T_{deconf} = 151 \text{ MeV})$$

• $f_{\pi}^2 = \frac{\lambda N_c}{54\pi^4} M_{\text{KK}}^2$ gives $\lambda = g_{\text{YM}}^2 N_c \approx 16.63$ [Sakai&Sugimoto 2005-7] (matching instead large- N_c lattice result [Bali et al. 2013] for $m_{\rho}/\sqrt{\sigma}$ gives $\lambda \approx 12.55$)

yields (for $N_c = 3$ and $\lambda = 16.63...12.55$):

- LO decay rate of ρ meson $\sim \lambda^{-1} N_c^{-1}$ $\Gamma_{\rho \to 2\pi}/m_{\rho} = 0.1535...0.2034$ (exp.: 0.191(1))
- decay rate for $\omega \to 3\pi$ (from Chern-Simons part of D8 action) $\sim \lambda^{-4} N_c^{-2}$ $\Gamma_{\omega \to 3\pi}/m_{\omega} = 0.0033...0.0102$ (exp.: 0.0097(1))

WSS model also predictive regarding glueball decay pattern and rates?

Glueball decay rates in Sakai-Sugimoto model

F. Brünner, D. Parganlija, AR, PRD91 (2015) 106002 Full decay pattern of scalar (Dilatonic, as opposed to Exotic) glueball G_D

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G \to 4\pi}/\Gamma_{G \to 2\pi} \sim \lambda^{-1} N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.0030.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.0030.004

 $\Rightarrow f_0(1500)$ seemingly disfavored, at least when nearly pure glue

(日) (同) (目) (日) (日) (0)

Glueball decay rates in Sakai-Sugimoto model

F. Brünner, D. Parganlija, AR, PRD91 (2015) 106002 Full decay pattern of scalar (Dilatonic, as opposed to Exotic) glueball G_D

decay $G_D \to 4\pi$ suppressed (below 2ρ threshold): $\Gamma_{G\to 4\pi}/\Gamma_{G\to 2\pi} \sim \lambda^{-1}N_c^{-1}$, while $f_0(1500) \to 4\pi$ dominant:

decay	Γ/M (PDG)	$\Gamma/M[G_D]$
$f_0(1500)$ (total)	0.072(5)	0.0270.037
$f_0(1500) \rightarrow 4\pi$	0.036(3)	0.0030.005
$f_0(1500) \rightarrow 2\pi$	0.025(2)	0.0090.012
$f_0(1500) \rightarrow 2K$	0.006(1)	0.0120.016
$f_0(1500) \rightarrow 2\eta$	0.004(1)	0.003 0.004

 $\Rightarrow f_0(1500)$ seemingly disfavored, at least when nearly pure glue

 $f_0(1710) \rightarrow \pi\pi \text{ OK: } \Gamma^{(\text{ex})}(f_0(1710) \rightarrow \pi\pi)/(1722 \text{MeV}) \sim 0.01$ but $f_0(1710)$ decays predominantly into $K\bar{K}!$

 not reproduced by (chiral=flavor-symmetric) WSS model, but may be due to mechanism of "chiral suppression of scalar glueball decay"

(Chanowitz 2005)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Nonchiral enhancement in mass-deformed WSS?

F. Brünner & AR, PRL 115 (2015) 131601 [1504.05815]

Current quark masses can be introduced in principle through deformations of the WSS model by either world-sheet instantons [Hashimoto, Hirayama, Liu & Yee 2008] or with bifundamental background scalar \mathcal{T} [Bergman, Seki & Sonnenschein 2007]

both lead to

$$\int d^4x \int_{u_{\rm KK}}^{\infty} du h(u) \operatorname{Tr} \left(\mathcal{T}(u) \operatorname{P} e^{-i \int dz A_z(z,x)} + h.c. \right),$$

where h(u) includes metric (glueball) fields

Choosing appropriate boundary conditions for \mathcal{T} , the quark mass matrix arises through

$$\int_{u_{\rm KK}}^{\infty} du \, h(u) \, \mathcal{T}(u) \propto \mathcal{M} = {\rm diag}(m_u, m_d, m_s),$$

thereby realizing a <u>Gell-Mann-Oakes-Renner relation</u>.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三回日 ののの

Witten-Veneziano mass term

Already in chiral model:

WSS contains (fully determined) Witten-Veneziano mass term for singlet η_0 pseudoscalar from U(1)_A anomaly contributions $\sim 1/N_c$

$$m_0^2 = \frac{N_f}{27\pi^2 N_c} \lambda^2 M_{\rm KK}^2$$

from
$$S_{C_1} = -\frac{1}{4\pi (2\pi l_s)^6} \int d^{10}x \sqrt{-g} |\tilde{F}_2|^2$$
 with
 $\tilde{F}_2 = \frac{6\pi u_{\rm KK}^3 M_{\rm KK}^{-1}}{u^4} \left(\theta + \frac{\sqrt{2N_f}}{f_\pi}\eta_0\right) du \wedge dx^4,$

where θ is the QCD theta angle and $\eta_0(x)=\frac{f\pi}{\sqrt{2N_f}}\int dz\,{\rm Tr} A_z(z,x).$

With $N_f = N_c = 3$, $M_{\rm KK} = 949$ MeV, $\lambda = 16.63 \dots 12.55$: $m_0 = 967 \dots 730$ MeV

Venice, July 8, 2017 9 / 16

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三回日 ののの

Witten-Veneziano mass term

With finite quark masses η_0 and η_8 no longer mass eigenstates. Diagonalizing:

 $N_f = N_c = 3, M_{\rm KK} = 949 \text{ MeV}, \lambda = 16.63 \dots 12.55: \left| m_0 = 967 \dots 730 \text{ MeV} \right|,$ (with $\mathcal{M} = \text{diag}(\hat{m}, \hat{m}, m_s)$, fixing $m_{\pi} = 140 \text{ MeV}$ and $m_K = 497 \text{ MeV}) \rightarrow$

$$m_{\eta} = 518\dots 476 \text{ MeV}, \quad m_{\eta'} = 1077\dots 894 \text{ MeV},$$

 $\theta_P = -14.4^{\circ}\dots -24.2^{\circ},$

Nonchiral enhancement in mass-deformed WSS!

Holographic realization of mass terms give additional vertices between glueballs and pseudoscalars Rigorously calculable for $G_D \eta_0^2$,

 $\mathcal{L}_{G_D\eta_0\eta_0}^{\text{chiral}} = \frac{3}{2} d_0 m_0^2 \eta_0^2 G_D, \qquad d_0 \approx \frac{17.915}{\lambda^{1/2} N_c M_{\text{KK}}}$

but not (yet) fixed for octet. Parametrize uncertainty by free parameter x:

$$\mathcal{L}_{G_D\pi\pi}^{\text{massive}} = \frac{3}{2} d_m G_D \mathcal{L}_m^{\mathcal{M}}, \qquad d_m \equiv x d_0$$

Most symmetric choice x = 1 (\Leftrightarrow no $G_D \rightarrow \eta \eta'$) \rightarrow relatively strong enhancement factor for kaons and η mesons:

$$\Gamma^{\rm chiral}_{G \to PP} \to \Gamma^{\rm chiral}_{G \to PP} \times \left(1 - 4 \frac{m_P^2}{M_G^2}\right)^{1/2} \left(1 + 8.480 \frac{m_P^2}{M_G^2}\right)^2$$

Comparison with $f_0(1710)$

decay	Γ/M (PDG)	$\Gamma/M[G_D]$ (chiral)	$\Gamma/M[G_D]$ (massive)
$f_0(1710)$ (total)	0.081(5)	0.0590.076	0.0830.106
$f_0(1710) \rightarrow 2K$	(*) 0.029(10)	0.0120.016	0.0290.038
$f_0(1710) \rightarrow 2\eta$	0.014(6)	0.003 0.004	0.0090.011
$f_0(1710) \to 2\pi$	$0.012(^{+5}_{-6})$	0.0090.012	0.0100.013
$f_0(1710) \rightarrow 2\rho, \rho\pi\pi \rightarrow 4\pi$?	0.0240.030	0.0240.030
$f_0(1710) \rightarrow 2\omega$	$0.010(^{+6}_{-7})$	0.0110.014	0.0110.014
$f_0(1710) \to \eta \eta'$?	0	if 0 : ↑
$\Gamma(\pi\pi)/\Gamma(K\bar{K})$	$0.41^{+0.11}_{-0.17}$	3/4	0.35
$\Gamma(\eta\eta)/\Gamma(K\bar{K})$	0.48 ±0.15	1/4	0.28

* PDG ratios for decay rates + $Br(f_0(1710) \rightarrow KK) = 0.36(12)$ [Albaladejo&Oller 2008]

- decays into 2 pseudoscalars: massive WSS perfectly compatible with PDG data!
- significant decay into 4 pions (after extrapolation to beyond 2ρ threshold): falsifiable prediction of this model! $(f_0(1710) \rightarrow 2\rho^0$ forthcoming from CEP experiments at LHC!)

Pseudoscalar glueball in Witten-Sakai-Sugimoto model

Pseudoscalar glueballs described by fluctuations of

RR field
$$\tilde{F}_2 = dC'_1 + \frac{c}{U^4} \left(\theta + \frac{\sqrt{2N_f}}{f_\pi} \eta_0(x) \right) dU \wedge d\tau$$
 (anomaly inflow)

No direct coupling of C_1 to flavor D8 branes,

vertex
$$G - \tilde{G} - \eta_0 \propto \sqrt{\frac{N_f}{N_c}} \frac{\sqrt{\lambda}}{N_c}$$
 from $-\frac{1}{4\pi (2\pi\ell_s)^6} \int d^{10}x \sqrt{-g} |\tilde{F}_2|^2$

 \rightarrow very narrow pseudoscalar glueball with dominant decay pattern

13 / 16

Pseudoscalar glueball in Witten-Sakai-Sugimoto model

Pseudoscalar glueballs described by fluctuations of

RR field
$$\tilde{F}_2 = dC'_1 + \frac{c}{U^4} \left(\theta + \frac{\sqrt{2N_f}}{f_\pi} \eta_0(x) \right) dU \wedge d\tau$$
 (anomaly inflow)

No direct coupling of C_1 to flavor D8 branes,

vertex
$$G - \tilde{G} - \eta_0 \propto \sqrt{\frac{N_f}{N_c} \frac{\sqrt{\lambda}}{N_c}} \int from - \frac{1}{4\pi (2\pi\ell_s)^6} \int d^{10}x \sqrt{-g} |\tilde{F}_2|^2$$

 \rightarrow very narrow pseudoscalar glueball with dominant decay pattern

Pseudoscalar glueball production

As with decay, production of $ilde{G}$ involves $G{+}\eta(')$ or $G{+}{
m another}\; ilde{G}$

(would explain why not yet observed in radiative J/ψ decays; needs excited ψ or Υ ?)

• Another possibility: Central Exclusive Production in high-energy hadron collisions!

Parametric orders of the production amplitudes of pseudoscalar glueballs in double Pomeron or double Reggeon exchange

(in the uppermost diagram the full line stands for G or G_T)

Production of $\tilde{G}\tilde{G}$ and $\tilde{G}\eta'$ pairs versus $\eta'\eta'$

Production from a virtual scalar glueball

for as functions of the c.o.m. energy of the produced pair (assuming $m(\tilde{G}) = 2.6 \text{ GeV}$)

The full line gives $N(\tilde{G}\tilde{G})/N(\eta'\eta')$, which is independent of the 't Hooft coupling; upper and lower dashed lines correspond to $N(\tilde{G}\eta')/N(\eta'\eta')$ with 't Hooft coupling 12.55 and 16.63, respectively.

CEP of $\eta'\eta'$ in Durham [Harland-Lang et al. 2013]: $\sigma(\eta'\eta')/\sigma(\pi^0\pi^0) \sim 10^3 \dots 10^5$ at $\sqrt{s} = 1.96$ TeV

Venice, July 8, 2017 15 / 16

Conclusion

• With just one dimensionless parameter, top-down holographic QCD model of Witten, Sakai and Sugimoto very predictive and surprisingly successful quantitatively:

Meson spectrum and dynamics:

— vector and axial vector mesons masses, ρ and ω decay rates, anomalous m'_η,\ldots with typically 10–30% errors

Glueball spectrum:

— if "exotic mode" discarded, scalar glueball mass close to lattice QCD prediction tensor and pseudoscalar glueball ~ 30 % too light

• WSS model also perhaps good guide for glueball signatures!

Scalar glueball decay pattern consistent with $f_0(1710)$ as nearly pure glueball, if predictions for 4π and $\eta\eta'$ decays confirmed

Golden channel?: very narrow pseudoscalar glueballs with characteristic decay and production pattern (would explain why not yet observed in radiative J/ψ decays)

(日) (同) (三) (三) (三) (○) (○)

BACKUP SLIDES

★□> ★□> ★目> ★目> 美国目 のQQ

Glueballs in the Witten model

 \exists scalar and tensor glueballs corresponding to 5D dilaton Φ and graviton G_{ij} Csaki, Ooguri, Oz & Terning 1999

Type-IIA supergravity compactified on x_4 -circle many more modes: Constable & Myers 1999; Brower, Mathur & Tan 2000

Mode	S_4	T_4	V_4	N_4	M_4	L_4
Sugra fields	G_{44}	Φ, G_{ij}	C_1	B_{ij}	C_{ij4}	G^{α}_{α}
J^{PC}	0^{++}	$0^{++}/2^{++}$	0^{-+}	1^{+-}	1	0^{++}
n=0	7.30835	22.0966	31.9853	53.3758	83.0449	115.002
n=1	46.9855	55.5833	72.4793	109.446	143.581	189.632
n=2	94.4816	102.452	126.144	177.231	217.397	277.283
n=3	154.963	162.699	193.133	257.959	304.531	378.099
n=4	228.709	236.328	273.482	351.895	405.011	492.171

Lowest mode not from dilaton, but from "exotic polarization" - in 11D notation:

$$\begin{split} \underline{\delta g_{44}} &= -\frac{r^2}{L^2} f \, H(r) G(x), \quad \delta g_{\mu\nu} = \frac{r^2}{L^2} \left[\frac{1}{4} H(r) \eta_{\mu\nu} - \left(\frac{1}{4} + \frac{3R^6}{5r^6 - 2R^6} \right) H(r) \frac{\partial_{\mu} \partial_{\nu}}{M^2} \right] G(x) \\ \delta g_{11,11} &= \frac{r^2}{L^2} \frac{1}{4} H(r) G(x), \quad \delta g_{rr} = -\frac{L^2}{r^2} f^{-1} \frac{3R^6 H(r) G(r)}{5r^6 - 2R^6}, \quad \delta g_{r\mu} = \frac{90r^7 R^6 H(r) \partial_{\mu} G(x)}{M^2 L^2 (5r^6 - 2R^6)^2} \\ &= 0 \text{ and } e^{-\frac{\pi^2}{2} \frac{1}{4} H(r) - \frac{\pi^2}{2} \frac{1}{4} \frac{1}$$

Lattice glueballs vs. supergravity glueballs

Quantitative predictions: vector meson spectrum

Parameter-free prediction of (axial-)vector meson mass pattern:

Isotriplet Meson	$\lambda_n = m^2 / M_{\rm KK}^2$	$m/m_{ ho}$	$(m/m_{ ho})^{ m exp.}$	$(m/m_{ ho})^{N \to \infty}$
$1^{}(\rho)$	0.669314	1	1	1
$1^{++}(a_1)$	1.568766	1.531	1.59(5)	1.86(2)
$1^{}(\rho^*)$	2.874323	2.072	1.89(3)	2.40(4)
1^{++} (a_1^*)	4.546104	2.606	2.12(3)	2.98(5)

(last column from lattice study by Bali et al. JHEP 06, 071 (2013))

agreement within $\lesssim 20\%$

not bad, given that WSS is not yet large-N QCD (in particular at scales $\gtrsim M_{
m KK}$)

(near-perfect agreement for $m_{a_1}/m_{
ho}$ with real QCD certainly fortuitous)

Constraints on $\eta\eta'$ rates for $f_0(1710)$ as \approx pure glueball

Relaxing x = 1: [F. Brünner & AR, PRD92, 1510.07605]

WSS model gives *flavor asymmetries* consistent with experimental results for $f_0(1710)$ in as long as $\Gamma(G \to \eta \eta') / \Gamma(G \to \pi \pi) \lesssim 0.04$ (upper limit from WA102: < 0.18)

Tensor glueball decay rates in Sakai-Sugimoto model

Tensor glueball in WSS, and extrapolated to higher mass:

decay	М	$\Gamma/M[T(M)]$
$T \rightarrow 2\pi$	1487	0.0130.018
$T \rightarrow 2K$	1487	0.004 0.006
$T \rightarrow 2\eta$	1487	0.00050.0007
T (total)	1487	$\approx 0.02 \dots 0.03$
$T \to 2\rho \to 4\pi$	2000	0.1350.178
$T \to 2K^* \to 2(K\pi)$	2000	0.119 0.177
$T \to 2\omega \to 6\pi$	2000	0.0450.059
$T \to 2\pi$	2000	0.0140.018
$T \rightarrow 2K$	2000	0.010 0.013
$T \rightarrow 2\eta$	2000	0.00180.0024
T (total)	2000	$\approx 0.3 \dots 0.45$
T (total)	2400	$\approx 0.45 \dots 0.6$

Very broad tensor glueball, if at 2.4 GeV (probably unobservable)

With a mass of 2 GeV, width larger but perhaps comparable with that of the rather broad tensor meson $f_2(1950)$, which has $\Gamma/M = 0.24(1)$.

Very narrow (unconfirmed) candidate $f_J(2220)$ not compatible with WSS

ELE SQC