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Motivation

* D-brane compactifications provide a promising framework for model building.

+ They allow for large extra dimensions which imply a significantly lower string scale,
even of just a few TeV.

* Scenarios of these kinds may explain the hierarchy problem, but also allow for stringy
signatures that can be observed at LHC.

Antoniadis Arkani-Hamed Dimopoulos Dvali
+ In these compactifications,
« gauge fields are strings with both ends on the same D-brane.
* matter fields are strings stretched between different branes.

* Several constructions have been built which come very close to the Standard Model.

* Particular interest have the intersecting D-brane scenarios.
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Motivation

+ In these scenarios, Standard Model matter fields are living at D-brane intersections.

* However, at the same intersections, there exist a tower of stringy excitations with
masses that depend on the string scale M; but also the intersection angle 6:

M= 0, M2, 20M2, 30M° ...

* Thus, each particle living at the intersections has a towers of states similar to the KK
towers, with the difference that each of them has different mass gaps.

+ If the string scale is at a few TeV range and the intersection angle is small, these
stringy excitations might be visible at LHC.

* Such models can be easily distinguished from KK models.

+ Jtis very interesting to study their decay channels and their lifetimes.
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+  We focus on type IIA constructions in a 7°xT?xT? space with intersecting D6 branes:

SUN)xU(1)  SUM)xU(I)
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A x5l X7 x9

354 X6 X8
An open string stretched between branes.

N M

+ Strings with both ends on a stack of branes give rise to U(N) = SUN)xU(1) group.
+ Strings stretched between different stacks transform as bifundamentals.

+ Applying these rules we can built a local D-brane realisation of the SM.



Standard Model from open strings

* Forthe SU(3) x SU(2) x U(1)y we need 4 stacks of (3,2,1,1) D-branes.
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Standard Model from open strings

* Forthe SU(3) x SU(2) x U(1)y we need 4 stacks of (3,2,1,1) D-branes.

+ Matter content at D-brane intersections.
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+ SM gauge fields are strings on the same stack of D-branes.

+ SM matter fields live at intersections. However, they are not alone...

Gauge Bosons
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+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.

+ FEach vibrating string is a massive copy of the same massless field.
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Towers of massive copies at intersections

+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.

+ FEach vibrating string is a massive copy of the same massless field.
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Towers of massive copies at intersections

+ Strings vibrate. The frequencies are not random. They are proportional to the angle 6.

+ FEach vibrating string is a massive copy of the same massless field.
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Example:
» The “zero” mode H is massless: M?= 0.
. The “first” H is massive: M2 = OM2.

» The “second” ﬁ is massive: M2 = 20Mz:.

efcetc...

+ Such towers of states appear at each intersection.
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+ The Standard Model revised.
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Consequences and predictions

+ The Standard Model revised.

+ At each intersection we have towers of states.
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Consequences and predictions

+ The Standard Model revised. Masses

+ At each intersection we have towers of states.
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+ Qur aim is to study the phenomenological consequences of these massive copies of the
Standard Model matter particles.
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*  And the three vacua that these states act on:
WS fermionic (NS):  |a':a?:a®) N g

WS fermionic (R): !al; a*; a3>R

2

WS bosonic:  |a';a*;a’) B
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Sectors at the intersections

* Fock space at intersections (at the [-forus):
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+ NS sector (spacetime bosc‘)n% bl e
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* R sector (spacetime fermions)
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* To check that we express states to their VO's using the dictionary:

+ For the NS-sector:

Positive angle 0
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* To check that we express states to their VO's using the dictionary:

+ For the NS-sector:

Positive angle 0

|0)BaNs
a_g|0)BenNs

(a—9)*|0) Bons
Y_1,9|0)Bans
a—gt_1,40)BanNs
(a_p)’ Y_1.40)BenNs

+ For the R-sector:

Positive angle 0

10)BoR

ei0—1/2H 5+

Negative angle 0

10)BoNsS eZ:QH o,
| 92>B®NS G’f@H T o
(a9)” |0)BanNs : O
Y_1_4|0)BenNs eHOH N o=
agP_1_g|0)BaNs it d
(cvg)’ Y_1_4|0)BenNs e} =
Negative angle 0

103 aan L O+UDH 5=

+* The o, 7, w are twisted bosonic conformal fields.
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Vertex Operators

+ Each physical VO has to obey:
QBrsT, V]| =0

where the BRST charge is given by:
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Vertex Operators

+ Each physical VO has to obey:
QBrsT, V]| =0

where the BRST charge is given by:
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* The physical condition typically gives:

* asimple pole — the equations of motion.

* adouble pole — the energy-momentum equation.



+ The ”zero” states (massless) are:
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+ Therefore, this is a physical massless fermion.
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+ The physical condition [Qgrst, V] = 0 gives:
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+ Therefore, this is a physical massless fermion.

* That could be any chiral fermion in the SM massless spectrum.
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Light stringy state phenomenology

+ Qur goal is to evaluate couplings between light stringy states and SM fields.

+  With such couplings at hand we can write an effective action (string theory did her job)
and proceed to the phenomenological study:.

* There are two kind of couplings we will study
« light stringy states with SM gauge fields.
* light stringy states with SM matter fields.

+ All the above can be computed by 4-point amplitudes with fermionic external legs.
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Strategy

gauge coupling
(with that we
normalise our fields)

* Direct 3-point amplitude computation are ambiguous.

+ Thus, we start by the 4-point amplitude and we factorise:

W\/\/X .
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W )? == \\./
Yukawa ~/

+ s-channel: a gauge fields exchange

+ t-channel: a scalar exchange - /\_

Y X

massless and
massive states
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Our setup

* In order to proceed we need to specity our setup.

+ Consider three stacks of D-branes within a semi-realistic brane configuration:

c

a

Y

[ ey

o

1

+ For the sake of concreteness we choose a supersymmetric setup with:

0, >0, .>0. 9, <0 0L, + 62, + 62, =0
0. >0, . >0, g < —> 0. +0 +6 =1
. <0, P <b. 0.<t 0 +6 +0 = -2

* At the intersections live chiral fermions v, ¥, ¥, Y, ¢, ¢ and their superparteners ¥, X, ®.



Fields at angles >

+* VQO's for the fields at the ab, bc, ca intersections. ’

—1 e i o % 2 3 ;
V( )ab = C(boe ¢10¢06 SOO'OL1 b0'a2 b01+a3 bez[aa,b‘pl+aa,b¢2+(aa,b+1)<ﬂ3]esz

SR

L = < iy & % & 3 3 :
V( 2) = Cyee ¢1o¢845a6 Oal Oa2 Opigd oil(ay .= 3)e1+(af .~ 3)p2+(ay .+ 3)ws] LikX

i3 — 10 4/, -5 il(as .~ 5 o1 +(ad .= 3 Jwatley .+35)@a] kX
Viimxte = Ot "V 500" Ty 03 0y, €001 gl e
~ _¢10 ~T & ~5 Z[(a’ll) c+l)901+(a’g C_l)QOQ—i_(a:g c+l)903] 1k X
+Cy. e ¥,.,0% 2 gl 0g2 O1pg3 € e 2 e 2 e T2/P3le
AN et i . 1 3 2 ¥ 3 b 1 ;
VX(OZZ)Z(C)G' == Cxoe ¢10X85a6 2 0'1+a£,a0'1+ag’a0'1+ag’a6?’[(ac,a+2)@1+(ac,a+2)902+(ac,a+2)<103]67’kX
e o e she 1 2 1 3 1 -
V>§1=2>2§a = CX1€ ¢10X?Sae 2 01_'_&%’&014_&2’&7_1_'_&2’@ez[(ac,a-l-2)901-|—(ac,a,+2)902+(ac,a+2)903]€sz

+ 0)216_¢10>~<T (% 2 Oiiat Otia? Oiial e’i[(ai,a‘F%)¢1+(ai,a+%)¢2+(ai,a_%)903]67370(



Fields at angles B

I 2 )
+* VQO's for the fields at the ab, bc, ca intersections. ’ ]
DR —— ————
—1 - G o} 2 3 .
VCb( _)ab = Cg,€ ¢10¢06 i L 0q2 01443 bez[aa,b‘pl+aa,b¢2+(aa,b+1)<ﬂ3]esz
)= 0 a, a, @,
RS ; "
Vé —2>sz = Cwoe_@owg‘sae—%aag Tg2 O14q? oil(ay .= 3)e1+(ag .~ 3)p2+(ap o +5)ps] LikX
= 0 C () W@
Lo : :
V%i —2>zbc = Cwle_qblOw?Sae_%Ta% O_ag 0-14—&2 62[(ai,c—%)901+(ag’c—%)@24—(&2’0—#%)@3]621{)(
1=X1 e € .
+ sz €_¢101;1r - Cde_%aal g2 01,42 ei[(ai,c+%)¢1+(ag,c_%)902+(a2,c+%)903]6ikX
1 & b,c bi,e b,c
NS S Ll i 1 o 1 % 1 :
VX(OZZ)Z(C)G' == Cxoe ¢10X85a6 2 0-1—|—G% a0'1_|_a% a0'1+a2 ae?’[(ac,a—i_2)301+(ac,a+2)902+(ac,a+2)<103]67’kX
V>§1:2>2§a = CX1€ ¢1OX(1XSOée 2 0-1+a% a0'1_|_a2 a7-1+a2 aez[(ac,a+2)901+(a’c,a,+2)902+(a’c,a+2)903]67’kx

+ CX1€_¢1O>ZT ; Cd6—50-1+a1 Ciia? Flias e’i[(ai,a‘F%)901+(&§,a+%)902+(a:2,a_%)903]6737€X

m¢0_0 ’ m¢0_0 ) mXo_O
, misajd, m,=0-lCl/



The A <1/701/J01/701/J0> amplitude

+ By the A(Yooo)o) we fix the normalisation of the ¢ fields.
1
A(to, %0, %0, %0) = |Cy, |* CDgCDgggp%(2)'%(4)%(1)-%(3)/O dea” M1 -g*"!

3 b -
4 2 _ ) pre, " 4 . 7
o' Ky ) Z - [_ mty(x) < o s S W‘abC’n%L%J

X
: 1
Lb,ILc,IFaI <$ Sin 7T]a,£0| LE,I A2 o/

1

1 nr,mryg



The A <1/701/J01/701/J0> amplitude

+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.

1
A(to, %0, %0, %0) = |Cy, |* CD2CDgggpr(2)'w0(4)'§;0(1)'¢0(3)/O dea” M1 -g*"!

AT O/KCb wtr(x) dx’el ., i W\ab | 272
X = ~n3L
H Laake ¥, Z .y [ Siﬂﬂ’agcl Lg)l i g 412 hd

nr,mrg

C

l//\ /W
w/ C \W



The A <1/701/J01/701/J0> amplitude

+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.

1
A(to, %0, %0, %0) = |Cy, |* CD2CDgggpr(2)'w0(4)'§;0(1)'¢0(3)/O dea” M1 -g*"!

4 o/KCb mtr(x) 4o’ 9 SiB W‘ab | n2 T2
X = ~n3L
H LyiLe i Fo, Z .y [ sin W]ab | Lg)l g 4y ad

nr,mrg




The A <1/701/J01/701/J0> amplitude

+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.

1
A(to, %0, %0, %0) = |Cy, |* CD2CDgggp%(2)'%(4)%(1)-%(3)/O dea” M1 -g*"!

42/ KO° wiplz) [4n'el , sin W\ab | 3
X - il
H LprLeFo,(z Z - [ sinwlaj,| \ LZ; g Lo =~ hd

nr,mrg

W . W

i
w/c‘\w



The A <1/701/J01/701/J0> amplitude

+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.

1
A(to, %0, %0, %0) = |Cy, |* CD2CDgggp%(2)'%(4)%(1)-%(3)/O dea” M1 -g*"!

42/ KO° wiplz) [4n'el , sin W\ab | 3
X - il
H LprLeFo,(z Z - [ sinwlaj,| \ LZ; g Lo =~ hd

nr,mrg

i :
\ -

b

/ \



The A <1/701/J01/701/J0> amplitude
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+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.
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The A <1/701/J01/701/J0> amplitude

+ By the A(Yoo)o)o) we fix the normalisation of the ¢ fields.
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Yukawas between SM and |.s.s

* The Yukawas are (by direct computations and using some SUSY Ward ID’s)
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+ Semi-realistic D-brane models predict towers of states for each Standard Model field.

+  All these towers come with different mass spacings, which depend on the intersection
angle M~ ~ OM_ where these towers of states live.

+ They are also very different from the related KK states.

+ In this work we have presented scattering amplitudes involving two gauge bosons and
two of the lightest descendants of the quarks.

+ Other processes as well as the lifetimes of these states are works in progress.

+ If the string scale is at a few TeV region and some of the intersecting angles are small
these states are very light.

+ Decays of such states might be visible at LHC.



