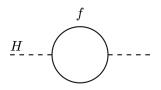
Naturalness and Dark Matter in the BLSSM

Simon J.D. King

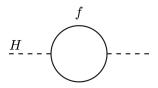
EPS-HEP 2017, Venice, Italy

6th July 2017

Outline


- 2 Solving Problems in the SM
- 3 Results Fine-Tuning & Dark Matter

In collaboration with L. Delle Rose, S. Khalil, C. Marzo, S. Moretti, C.S. Ün [arXiv: 1702.01808]

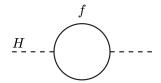

Motivations

• Hierarchy Problem

Motivations

• Hierarchy Problem

Dark Matter


Figure: Chandra X-ray Observatory

Simon J. D. King

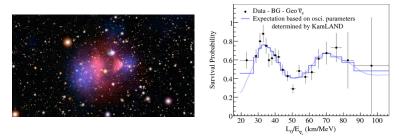
Naturalness and Dark Matter in the BLSSN

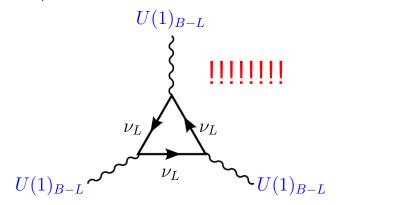
Motivations

• Hierarchy Problem

• Dark Matter

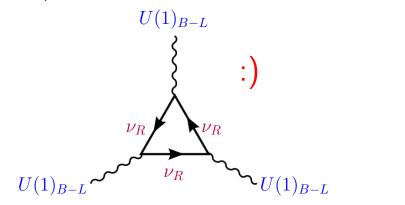
Non-vanishing Neutrino Masses




Figure: Chandra X-ray Observatory // KamLAND experiment, 0801.4589

Simon J. D. King

Naturalness and Dark Matter in the BLSSM


Explaining the BLSSM - "B-L"

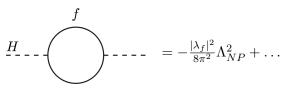
- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

Explaining the BLSSM - "B-L"

- SM has exact B-L conservation
- Promote accidental, global symmetry to local. SM gauge group now extended to: $G_{B-L} = SU(3)_c \times SU(2)_L \times U(1)_Y \times U(1)_{B-L}$
- anomaly cancellation require SM singlet fermion (right-handed neutrinos)

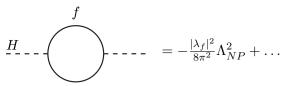
Explaining the BLSSM - "SSM"

Chiral Superfield		Spin 0	Spin 1/2	G_{B-L}
Quarks/Squarks, (x3 generations)	\hat{Q} \hat{U} \hat{D}	$ \begin{array}{c} (\tilde{u}_L \tilde{d}_L) \equiv \tilde{Q}_L \\ \tilde{u}_R^* \\ \tilde{d}_R^* \end{array} $	$(u_L d_L) \ ar{u_R} \ ar{d_R}$	$(3, 2, \frac{1}{6}, \frac{1}{6}) (\mathbf{\overline{3}}, 1, -\frac{2}{3}, -\frac{1}{6}) (\mathbf{\overline{3}}, 1, \frac{1}{3}, -\frac{1}{6})$
Leptons/Sleptons, (x3 generations)	\hat{L} \hat{E}	$ (\tilde{\nu}_L \tilde{e}_L) \equiv \tilde{L}_L \\ \tilde{e}_R^* $	$(u_L e_L) \\ e_R^-$	$ \begin{array}{c} (1,2,-\frac{1}{2},-\frac{1}{2}) \\ (1,1,1,\frac{1}{2}) \end{array} $
Higgs/Higgsinos	\hat{H}_u	$(H_u^+ H_u^0)$	$(\tilde{H}_u^+ \tilde{H}_u^0) \equiv \tilde{H}_u$	(1, 2, $\frac{1}{2}$, 0)
	\hat{H}_d	$(H^0_d H^d)$	$(\tilde{H}^0_d\tilde{H}^d)\equiv\tilde{H}_d$	(1, 2, $-\frac{1}{2}$, 0)
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
Gluino, gluon		$ ilde{g}$	g	(8 , 1 , 0,0)
Wino/W bosons		$\tilde{W}^{\pm} \ \tilde{W}^0$	$W^{\pm}W^{0}$	(1 , 3 , 0, 0)
Bino / B boson		$ ilde{B}^0$	B^0	(1 1 , 0, 0)


Explaining the BLSSM - "SSM"

• Content in addition to MSSM:

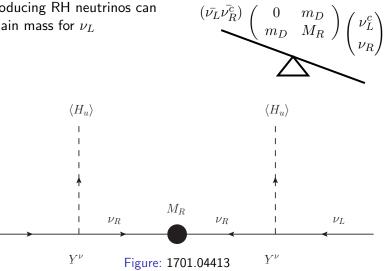
Chiral Superfield	Spin 0	Spin 1/2	G_{B-L}	
RH Sneutrinos / Neutrinos (x3) Bileptons/Bileptinos	$egin{array}{c c} \hat{ u} & \hat{\eta} & \hat{ar{\eta}} & ar{\eta$	$egin{array}{c} ilde{ u}_R^* & \ \eta & \ ar{\eta} & \ a$	$egin{array}{c} u_R \ ilde{\eta} \ ilde{ ilde{\eta}} \ ilde{ ilde{ ilde{\eta}}} \end{array}$	$(1, 1, 0, \frac{1}{2}) (1, 1, 0, -1) (1, 1, 0, 1)$
Vector Superfields		Spin 1/2	Spin 1	G_{B-L}
BLino / B' boson	\tilde{B}'^0	B'^0	(1 1 , 0, 0)	


- Three extra RH neutrinos + SUSY partner (from anomaly cancellation condition)
- Two extra Higgs (for breaking gauged $U(1)_{B-L}$)
- One B' + SUSY partners (from broken $U(1)_{B-L}$)

Hierarchy Problem

• Self energy correction to bare Higgs mass. Treating Λ_{NP} at GUT scale (10¹⁶GeV) means the bare Higgs mass is fine-tuned to $m_H^2/\Lambda_{UV}^2 \sim 1$ in 10^{30} !

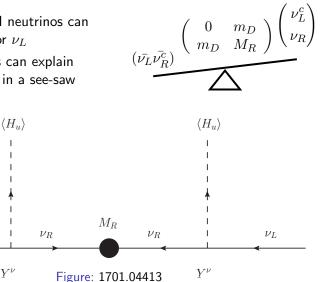
Hierarchy Problem



- Self energy correction to bare Higgs mass. Treating Λ_{NP} at GUT scale (10¹⁶GeV) means the bare Higgs mass is fine-tuned to $m_H^2/\Lambda_{UV}^2 \approx 1$ in 10³⁰!
- Supersymmetry for every fermion, there is a scalar partner providing the opposite sign contribution

Non-vanishing Neutrino Masses I

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L



 ν_L

Non-vanishing Neutrino Masses I

 Y^{ν}

- ν_L have mass!
- Introducing RH neutrinos can explain mass for ν_L
- Large RH mass can explain small LH mass in a see-saw mechanism

 ν_L

Non-vanishing Neutrino Masses II

• ... However, this leads to B - L violation, as in $0\nu 2\beta$ -decay

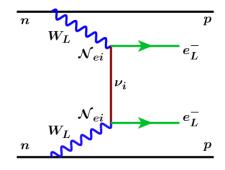
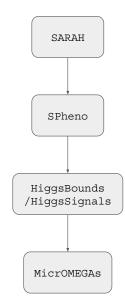



Figure: 1301.4784

• In BLSSM, gauge symmetry is broken with a Higgs mechanism

Numerical work?

- Mathematica package SARAH makes a spectrum generator based on SPheno
- SPheno then calculates the full spectrum, for 60,000 data points, over a range of the GUT parameters (m₀, m_{1/2}, A₀, μ, Bμ, μ', Bμ')
- Current Higgs constraints are applied in HiggsBounds / HiggsSignals
- Finally, MicroOMEGAs finds the relic density.

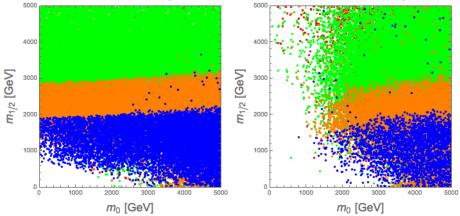
Introduction to Fine-Tuning

• We use the Ellis-Enqvist-Nanopoulos-Zwirner / Barbieri-Giudice definition of fine-tuning

$$\Delta = Max \left\{ \left| \frac{a_i}{M_Z^2} \frac{\partial M_Z^2(a_i, m_t)}{\partial a_i} \right| \right\}$$

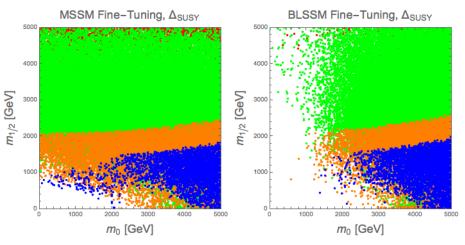
• Definition applied for two scales:

- GUT-scale parameters $(m_0, m_{1/2}, A_0, \mu, B\mu, \mu', B\mu')$
- SUSY-scale parameters $(m_{H_u}, m_{H_d}, m_{Z'}, \mu, \Sigma_u, \Sigma_d)$
- Recent work¹ has shown that loop contributions to tadpole equations may be important to GUT fine-tuning
- \bullet Both CMSSM and the BLSSM with universality have GUT-FT reduced by factor ~ 2

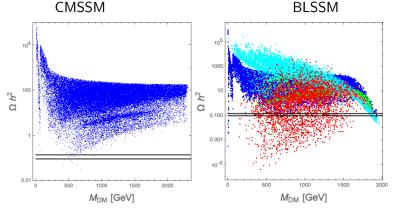

¹Ross, Schmidt-Hoberg, Staub, 1701.03480

Fine-Tuning Results GUT scale

• Fine-tuning plotted in m_0 , $m_{1/2}$ frame. Points are blue for FT < 500, orange 500 < FT < 1000, green 1000 < FT < 5000, red FT > 5000


MSSM Fine-Tuning, ∆

BLSSM Fine-Tuning, Δ


Fine-Tuning Results SUSY scale

• Fine-tuning plotted in m_0 , $m_{1/2}$ frame. Points are blue for FT < 500, orange 500 < FT < 1000, green 1000 < FT < 5000, red FT > 5000

Dark Matter

- In SUSY models, the lightest super-partner is *stable* from R-parity conservation
- CMSSM only candidate Bino (\tilde{B}^0) . BLSSM (with universality) also has Sneutrino $(\tilde{\nu}_R^*)$, Bileptino $(\tilde{\eta}, \tilde{\eta})$, BLino (\tilde{B}'^0)

Figure: 1702.01808 - This work

Simon J. D. King

Naturalness and Dark Matter in the BLSSM

Conclusions

- The BLSSM ...
 - Solves the hierarchy problem
 - predicts light, non-vanishing left-handed neutrino masses
 - offers multiple dark matter candidates
- Fine-tuning in BLSSM is comparable to CMSSM
- ...But with *much* larger parameter space available

For more details, see: arXiv: 1702.01808