

Low mass dielectron measurements in pp, p-Pb and Pb-Pb collisions with ALICE at the LHC

Raphaelle Bailhache Goethe-Universitaet Frankfurt on behalf of the ALICE Collaboration

July 6, 2017, EPS Conference on High Energy Physics, Venice, Italy

Dielectrons

- Produced during all stages of the collisions
- → Approximate mass ordering of the production time

pp collisions (vacuum baseline for Pb-Pb studies):

- Measure Dalitz decay of mesons (π⁰,η,ω,η',Φ) and 2-body resonance decays (ρ, ω, Φ)
- Study virtual direct photons (Y_{dir}*→e⁺e⁻)
 - Complementary to real photon measurements
 - Test pQCD
- Heavy-Flavour production via cc and bb decays (complementary to other HF analyses)

Quarkonia (not the subject of this talk)

Dielectrons

p-Pb collisions: study cold nuclear matter effects

Pb-Pb collisions:

- In-medium modification of vector mesons (connected to chiral symmetry restoration?

 P.M. Hohler and R. Rapp, Phys. Lett. B 731 (2014) 103)
- Virtual direct photons and contribution from thermal radiation from the medium at low $p_{\scriptscriptstyle T}$
- Energy loss of correlated charm and beauty quarks
- Thermal radiation from the Quark-Gluon Plasma: $dN/dm_{ee} \sim \exp(-m_{ee}/T)$ (no Doppler shift)

ALICE experiment

Inner Tracking System

- Tracking
- Vertexing
- Particle IDentification (via dE/dx in silicon layers)

Time Projection Chamber

- Tracking
- PID (via dE/dx in the gas)

Time-Of-Flight

• PID (via TOF measurement)

V0: centrality estimator and trigger

Collision system	Year	Number of events	Trigger
pp at √s = 7 TeV	2010 (Run-1)	≈ 370 M (L_{int} ≈ 6 nb ⁻¹)	Minimum bias
pp at √s = 13 TeV	2016 (Run-2)	≈ 104 M (L_{int} ≈ 1.8 nb ⁻¹) ≈ 48 M (L_{int} ≈ 832 nb ⁻¹)	Minimum bias high-multiplicity trigger
p-Pb at $\sqrt{s_{NN}}$ = 5.02 TeV	2013 (Run-1)	≈ 105 M ($L_{\rm int}$ ≈ 48 µb ⁻¹)	Minimum bias
Pb-Pb at \sqrt{s} = 2.76 TeV	2011 (Run-1)	\approx 20 M ($L_{\rm int} \approx 23 \ \mu b^{-1}$)	Centrality trigger 0-10%

pp collisions at $\sqrt{s} = 7$ TeV

- Corrected e⁺e⁻ spectrum in the ALICE acceptance
- Cocktail of known hadronic sources:
 - Measured π⁰,η,η',ρ,ω,Φ,J/ψ spectra taken as input.
 - Other light contributions: m_⊤ scaling
 - cc̄ and bb̄: PYTHIA 6 scaled to measured σ_{cc} and σ_{bb} ALICE Collaboration, arXiv:1702.00766 to be published in EPJC LHCb Collaboration, Eur. Phys. J. C71 (2011) 1645

- Cocktail of known hadronic sources consistent with data within uncertainties (Same analysis ongoing in pp collisions at \sqrt{s} = 13 TeV)
- More differential studies as a function p_{T}^{ee} and DCA_{ee} ongoing

DCA_{ee} analysis in pp at $\sqrt{s} = 7$ TeV

Observable:
$$DCA_{ee} = \sqrt{\frac{DCA_1^2 + DCA_2^2}{2}}$$

DCA_i=Distance-Of-Closest-Approach to primary vertex of electron i

 $DCA_{ee}(\sigma)$

non-prompt

 Compare measured DCA_{ee} distributions with DCA_{ee} templates from full MC simulations normalized to the cocktail

- Low mass region (0.2< $m_{\rm ee}$ <1.1 GeV/ c^2)
 - = mixture of prompt and non-prompt sources
 - Need heavy flavour (cτ ≈ 100-500 μm) to describe the tail of the distribution

→ Can separate prompt and non-prompt sources

Low mass dielectron with ALICE, EPS conference, 5-12 July 2017

Raphaelle Bailhache

DCA_{ee} analysis in pp at $\sqrt{s} = 7$ TeV

Intermediate-mass region (IMR, 1.1< m_{ee} <2.7 GeV/ c^2)

Dominated by heavy-flavour contributions

- No hint of prompt sources
- bb contribution dominates at large DCA_{ee}
 (cτ(B)≈ 470 μm, cτ(D)≈ 150 μm)

→ Separate cc and bb

Paper in preparation:

- e^+e^- production as a function of m_{ee}^- , p_T^{ee} and DCA_{ee}^-
- Study of heavy-flavour production
- Direct virtual photon study

p-Pb collisions at $\sqrt{s_{NN}} = 5.02 \text{ TeV}$

Differential analysis in m_{ee} and p_{T}^{ee} with Run-1 data:

p_{T}^{ee} spectrum in the Intermediate Mass Region

 $b\bar{b}$ increases with p_{T}^{ee}

 \rightarrow Disentangle \overline{cc} and \overline{bb}

• Data consistent with cocktail within uncertainties

 $m_{\rm ee} \, ({\rm GeV}/c^2)$

• Hint for smaller charm production (compared to N_{coll} scaling): cold nuclear matter effect ?

About 5 times more statistics in Run 2 data: m_{ee} , p_{T}^{ee} and DCA_{ee} studies going to higher p_{T}^{ee}

ALI-PREL-69715

pp at \sqrt{s} = 13 TeV: High-Multiplicity studies

New (or heavy-ion like) phenomena in High-Multiplicity (HM) pp events:

- Production/destruction of ρ mesons
- Multiplicity scaling of light hadrons, open heavy flavours and direct photons: understanding of Multiple Parton Interactions
- Thermal radiation (if any) in HM events

→ Compare dielectron yield (uncorrected) in MB and HM pp collisions

Charged-particle multiplicity at mid-rapidity (|y|<0.5):

$$< N_{ch}^{acc}(MB) > = 7.3$$

 $< N_{ch}^{acc}(HM) > = 32 (< N_{ch}^{acc}(MB) > x 4.36)$

Run-2 data

Ratio of dielectron mass spectra

$$\frac{N_{\rm ee}({\rm HM})\,/\,<\!N_{\rm ch}^{\rm acc}({\rm HM})\!>}{N_{\rm ee}({\rm MB})\,/\,<\!N_{\rm ch}^{\rm acc}({\rm MB})\!>}$$

In agreement with cocktail expectations

- J/Ψ mass region: consistent with parallel J/Ψ analysis Talk by J.Crkovska 06.07 at 11:30
- Intermediate mass region:
 agrees with D meson results at 7 TeV
 Talk by A. De Caro 06.07 at 11:45
 ALICE Collaboration, JHEP 09 (2015) 148

Run-2 data

Ratio of dielectron mass spectra

$$\frac{N_{\text{ee}}(\text{HM}) / < N_{\text{ch}}^{\text{acc}}(\text{HM})>}{N_{\text{ee}}(\text{MB}) / < N_{\text{ch}}^{\text{acc}}(\text{MB})>}$$

In agreement with cocktail expectations

- J/Ψ mass region: consistent with parallel J/Ψ analysis Talk by J.Crkovska 06.07 at 11:30
- Intermediate mass region: agrees with D meson results at 7 TeV Talk by A. De Caro 06.07 at 11:45 ALICE Collaboration, JHEP 09 (2015) 148
- π⁰ mass region:
 Ratio > 1, change of hadron p_T spectrum

 ALICE Collaboration, Phys. Lett. B 753 (2016) 319-329
- Low mass region:
 More data needed to investigate the spectrum modification in details
 x 5 more pp data recorded in 2016

Central Pb-Pb collisions at $\sqrt{s_{NN}}$ = 2.76 TeV

Invariant mass spectrum in 0-10% central Pb-Pb collisions ($m_{\rm ee}$ < 0.7 GeV/ c^2)

- Corrected e⁺e⁻ yield in the ALICE acceptance
- Cocktail of known hadronic sources:
 - Measured π⁰ spectrum taken as input
 - Other hadrons from $m_{\scriptscriptstyle T}$ scaling
 - Heavy-flavour contributions estimated with PYTHIA normalized to pp measurements x $N_{\rm coll}$
 - Data compatible with cocktail within uncertainties
 - Is there room for additional contributions?

Theoretical predictions

Data compared to:

- Cocktail without vacuum ρ
- Thermal dielectrons:
- from QGP (expanding fireball model with $T_c = 170 \text{ MeV}$)
- from hadron gas (include in-medium ρ and ω from hadronic many-body theory)
- → Sum of expected e⁺e⁻ yield in red

R.Rapp, Adv. High Energy Phys. 2013 (2013) 148253 R.Rapp, Phys. Rev. C63 (2001) 054907

- No sensitivity yet for possible thermal radiations from QGP and hadron gas
- Run-3 (upgrades) will allow more significant measurements

Virtual direct photons

Paper in preparation

Fit the mass spectrum in the mass range [0.1,0.3] GeV/c^2 with :

$$f(m_{ee}) = r \cdot f_{dir}(m_{ee}) + (1-r) \cdot f_{LF}(m_{ee}) + f_{HF}(m_{ee})$$

 $r = \text{fraction of direct photons} (Y_{\text{dir}}^* / Y_{\text{incl}}^*)$

$$\frac{1}{N_{\gamma}}\frac{dN_{ee}}{dmee} = \frac{2\alpha_{\rm e.m.}}{3\pi}\sqrt{1 - \frac{4m_e^2}{m_{ee}^2}}(1 + \frac{2m_e^2}{m_{ee}^2}) \times \frac{1}{m_{ee}}$$

ALI-PREL-108294

- Compatible with ALICE real photon measurements
- Fraction of direct photons similar to STAR and PHENIX results ($r \approx 0.1$ -0.2) in Au+Au collisions at $\sqrt{s_{NN}}$ = 200 GeV

Summary and Outlook

pp collisions: results at $\sqrt{s} = 7$ &13 TeV described by cocktail of known hadronic sources virtual direct photon, heavy-flavour, MB and HM studies ongoing

ALICE

p-Pb collisions: results at $\sqrt{s_{NN}}$ = 5.02 TeV compatible with hadronic cocktail within uncertainties x 5 more data recorded in Run-2 (study cold nuclear matter effects)

Pb-Pb collisions: results at $\sqrt{s_{_{NN}}}$ = 2.76 TeV compatible with hadronic cocktail within uncertainties no sensitivity yet for excess in the ρ region \rightarrow Run-2&3 data virtual direct photon studies in agreement with real photon measurements

Talk of R. Haake 06.07 at 18:00

PID with multivariate analysis

	Efficiency (%)	Purity (%)		
Cut Method Efficiency Prioritised	70	91		
Cut Method Purity Prioritised	13	99		
Multivariate Method	95	96		
Momentum integrated ($0.2 < p_{_{\rm T}} < 10 \; {\rm GeV}/c)$				

- Employ machine learning methods to identify e[±] and remove conversion
- Run-3 after ITS & TPC upgrades: higher rate & background rejection power

 → measure thermal radiation & ρ in-medium spectral function

 Talk of C. Lippmann 08.07 at 10:00 and of P. Camerini 08.07 at 9:45

Back-up

Electron Identification

Time Projection Chamber

Raphaelle Bailhache

Signal extraction

 Unlike-sign (ULS) pairs: contains real signal, correlated and combinatorial background

Signal

Like-sign (LS) pairs: 2√N₊₊.N₋
 Estimation of correlated and combinatorial background

Signal =
$$ULS - LS \cdot R$$

R: acceptance correction factor
 $R = ULS_{mix} / LS_{mix}$

DCA analysis

J/ψ mass region

Direct Virtual Photon in pp at $\sqrt{s} = 7$ TeV

High-multiplicity studies

Naive expectation: signal is proportinal to $N_{\rm ch}^{\rm acc}$ and combinatorial background grows like $N_{\rm ch}^{2}$

- Signal/background ratio lower for high multiplicity events
- Statistical significance comparable in background-dominated region

Hadronic cocktail in HM pp events

D mesons in pp at \sqrt{s} = 7 TeV ALICE Collaboration, JHEP 09 (2015) 148

J/Ψ similar to D mesons

Enhanced factor between 1.2 and 2 for the mean $p_{_{
m T}}$ of D mesons observed as function of $m_{_{
m ee}}$ in PYTHIA and the D meson multiplicity measurements in pp at \sqrt{s} = 7 TeV

Upper Limit on direct virtual photons

ALI-PREL-108358

Hadronic cocktail

Hadronic cocktail + virtual photons (r = 0.27)

ALI-PREL-108362

 $m_{\rm ee}$ (GeV/ c^2)

Hadronic cocktail

Hadronic cocktail + virtual photons (r = 0.20)

0.25

 $m_{\rm ee}~({\rm GeV}/c^2)$

0.15

Fraction of direct virtual photons

RHIC

LHC

p_T(GeV/c)

Run-3 after upgrades

- ITS upgrade:
 - Reduced material budget (x4) and improved vertex resolution (x3)
- TPC upgrade:
 - New readout chamber with GEM foils for continuous readout
 - High acquisition rate up to 50 kHz for Pb-Pb (x100)

New ITS, 2.5x10 9 events with *DCA* cuts Fit for $m_{\rm ee}>1.1~{\rm GeV}/c^2$: ${\rm d}N/{\rm d}m_{\rm ee}\sim \exp(-m_{\rm ee}/T) \rightarrow {\rm slope}$ presicion ±10% stat ±10-20% syst

