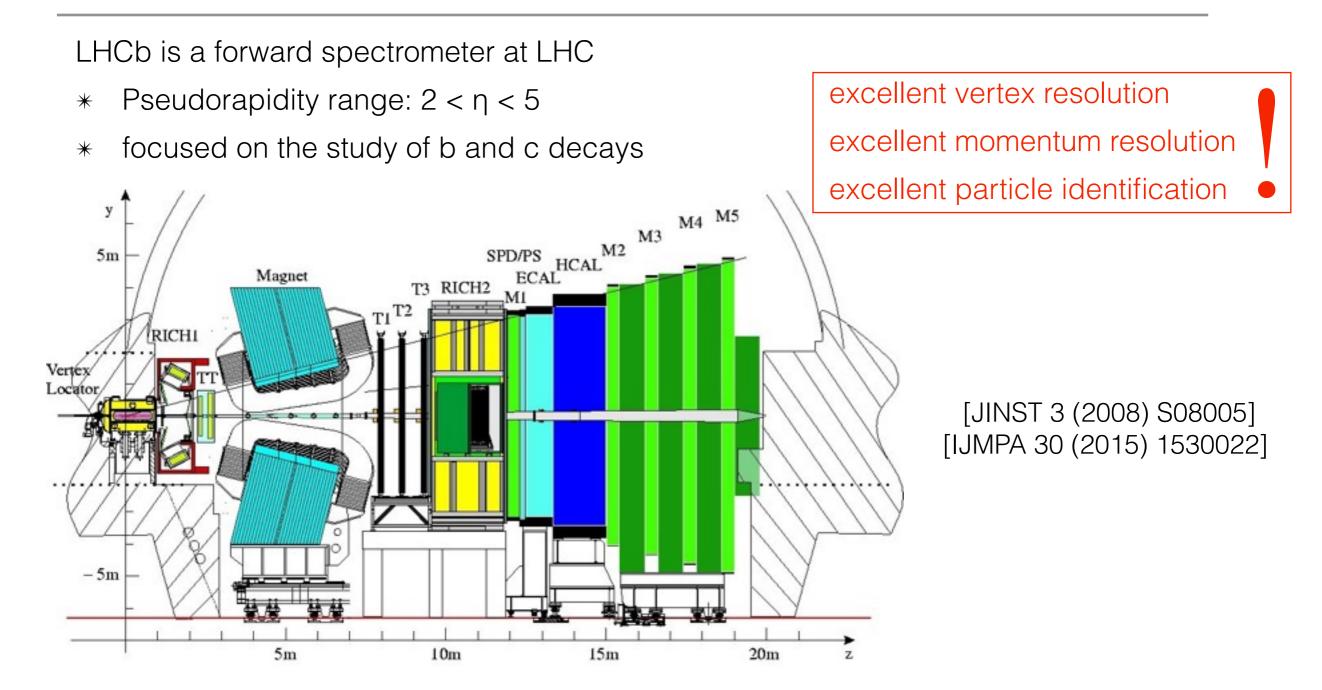


Search for long-lived scalar particles in B decays at LHCb

A. Mauri on the behalf of the LHCb collaboration

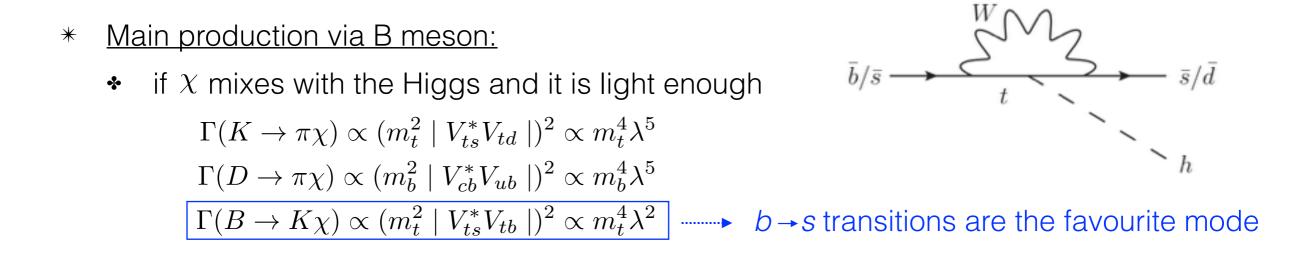
EPS-HEP 2017, Venice, 5-12 July July 6th, 2017

- * The Higgs discovered in 2012 at LHC is consistent with a SM Higgs boson
 - but it could still have non SM properties (coupling to exotic particles)


* There is a long list of theoretical models that predict the existence of new particles that couple to the SM sector by mixing with the Higgs

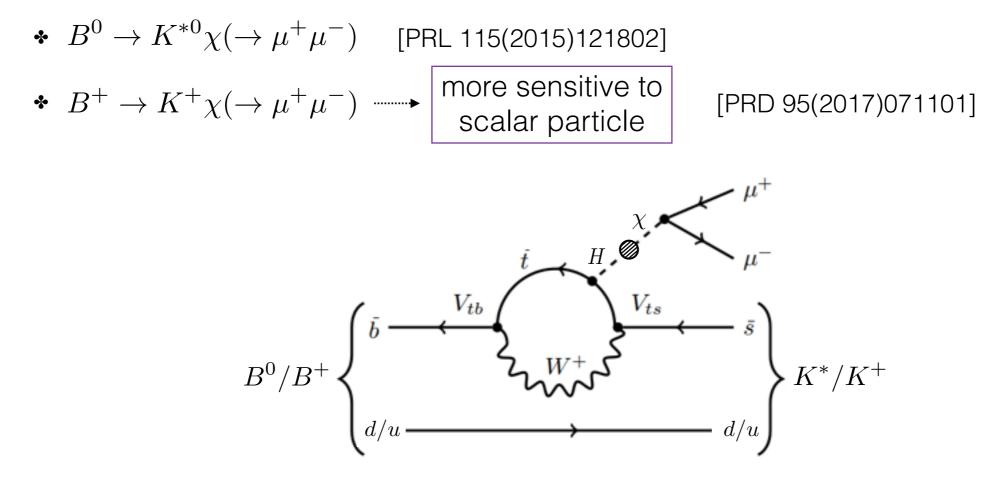
$$\left(\begin{array}{c}H\\\chi\end{array}\right) = \left(\begin{array}{cc}\cos\theta & -\sin\theta\\\sin\theta & \cos\theta\end{array}\right) \left(\begin{array}{c}H'\\\chi'\end{array}\right)$$

 Inflaton, axion-like, dark matter mediator models also predict the new boson to be <u>light</u>


A. Mauri (University of Zurich)

The LHCb detector

3 fb⁻¹ of data collected in 2011 and 2012


Why at LHCb?

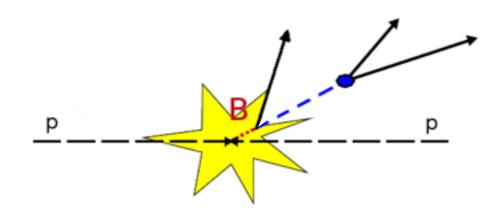
- * Advantages of the LHCb detector:
 - low p_T trigger \rightarrow low masses accessible
 - single muon, *p*^T > 1.76 GeV/*c*
 - di-muon, $p_{T_1} \times p_{T_2} > (1.6 \text{ GeV}/c)^2$
 - high efficiency for muon trigger (~90%)
 - very precise vertex reconstruction (VELO)
 - impact parameter resolution, $\sigma_{IP} = 20 \ \mu m$
 - lifetime resolution, $\sigma_T \sim 0.1$ ps

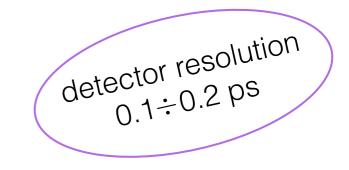
The decay: $B \to K^{(*)}\chi(\mu^+\mu^-)$

* Looking for a new scalar particle decaying into muons

* $\mathcal{B}(\chi \to \mu^+ \mu^-)$:

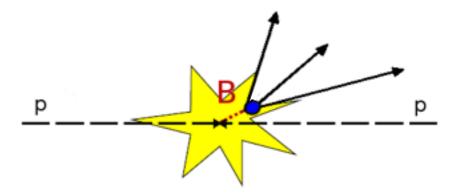
- dominant up to the hadronic threshold ($\chi \rightarrow 2h, \chi \rightarrow 3h$)
- always significant $O(10^{-2})$ in the full mass range

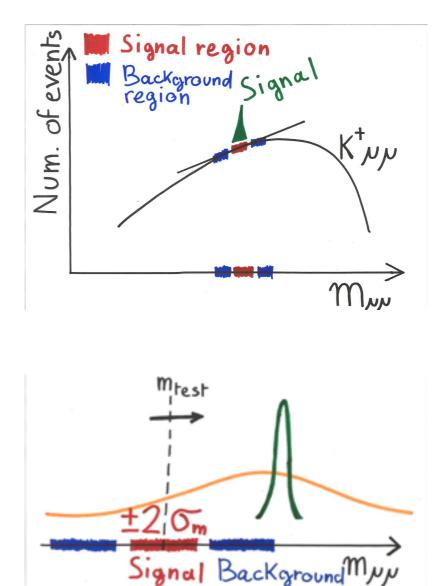

A. Mauri (University of Zurich)


Signal properties

* Depending on coupling to the SM, we can identify two **lifetime regimes**:

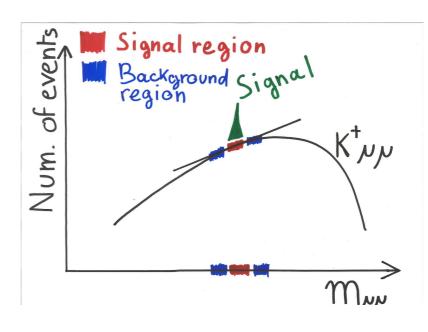
Long lifetime:

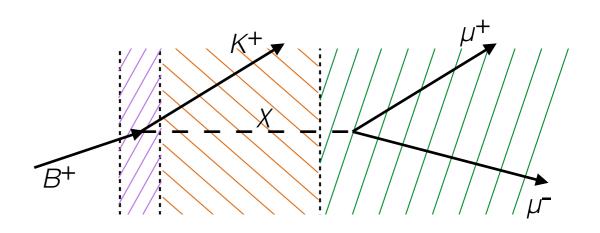

- ✤ Inflaton [JHEP1005(2010)010]
- Displaced vertex
- Almost background free
- Lower reconstruction efficiency


Short lifetime:

- Dark matter mediator [Phys.Lett.B727(2013)]
- Axion-like [Phys.Rev.D81(2010)034001]
- Prompt decay
- Contamination from SM background

Overview of the strategy

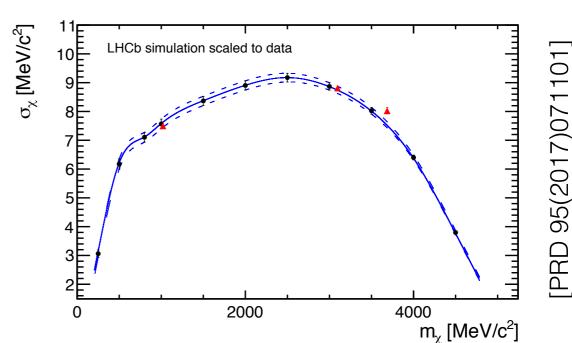

- * Unknown mass and lifetime: **2D search** (m, τ)
- * Peak search in the *dimuon mass* distribution
 - step of $\frac{1}{2}\sigma_m$
 - signal region: $\pm 2\sigma(m_{\chi})$
 - background region:
 - signal sideband
 - assume local-linearity
 - SM resonances must be vetoed
 - $\phi, J/\psi, \psi(2S), \psi(3770), \psi(4160)$ vetoed!



Strategy reference [M. Williams, JINST 10 (2015) P06002]

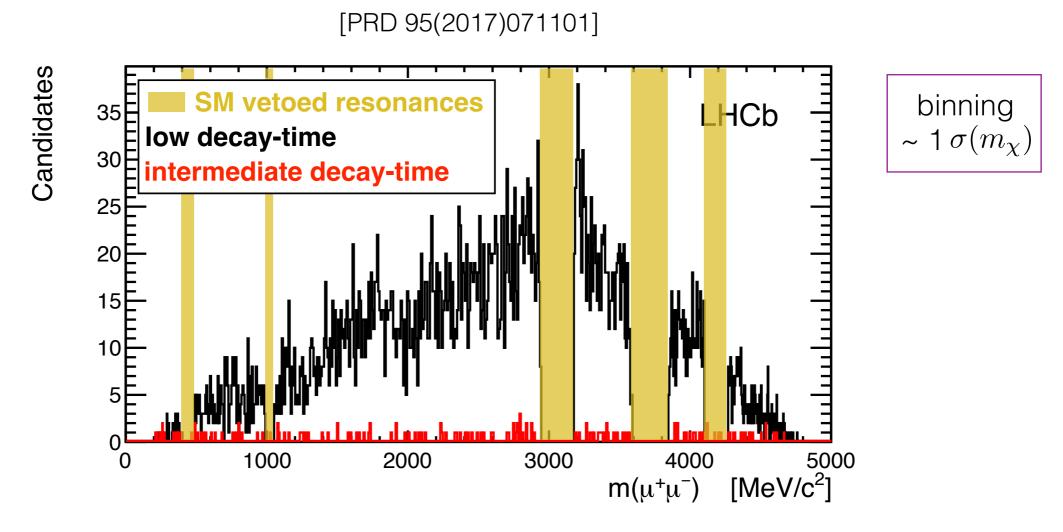
Overview of the strategy (II)

- * Unknown mass and lifetime: **2D search** (m, τ)
- * Peak search in the *dimuon mass* distribution
 - step of $\frac{1}{2}\sigma_m$
 - signal region: $\pm 2\sigma(m_{\chi})$
 - background region:
 - signal sideband
 - assume local-linearity
 - SM resonances must be vetoed
 - $\phi, J/\psi, \psi(2S), \psi(3770), \psi(4160)$ vetoed!
- * We define 3 bins of *time of decay*
 - ✤ prompt: |t| < 1 ps</p>
 - displaced: 1 < t < 10 ps
 - "zero background" search: t > 10 ps
 - O(1) expected event
- * Upper limit set with the CLs method, as function of mass and lifetime



A. Mauri (University of Zurich)

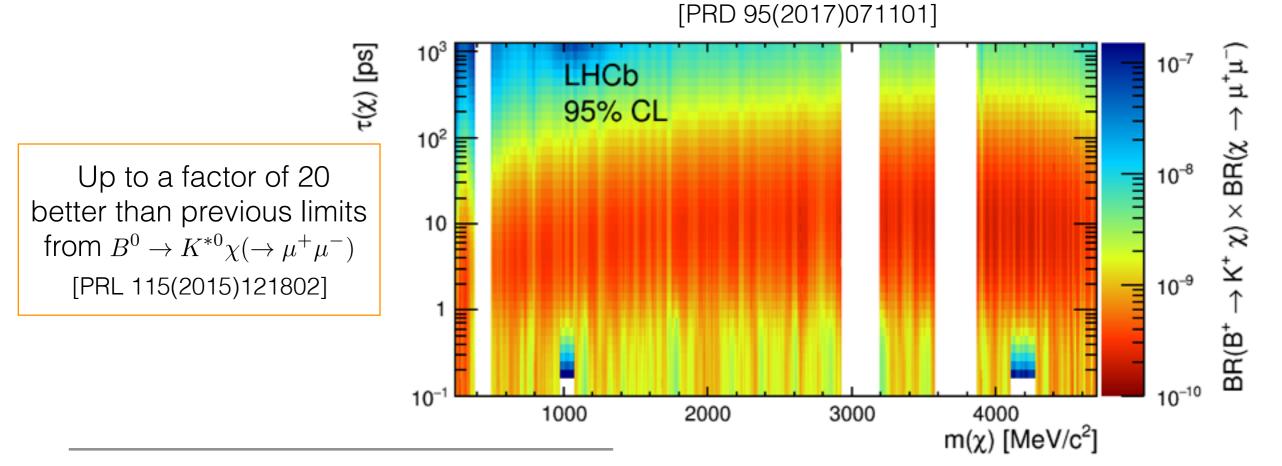
Selection & background


- * Trigger on muons
- * Multivariate selection (MVA):
 - High rejection of combinatorial background
- * Main background sources:
 - SM $B^+ \to K^+ \mu^+ \mu^-$
 - combinatorial background
 - O(1000) expected events
- B candidates selected within 50 MeV around the B mass
 - dimuon mass resolution between
 3 and 9 MeV

can be displaced

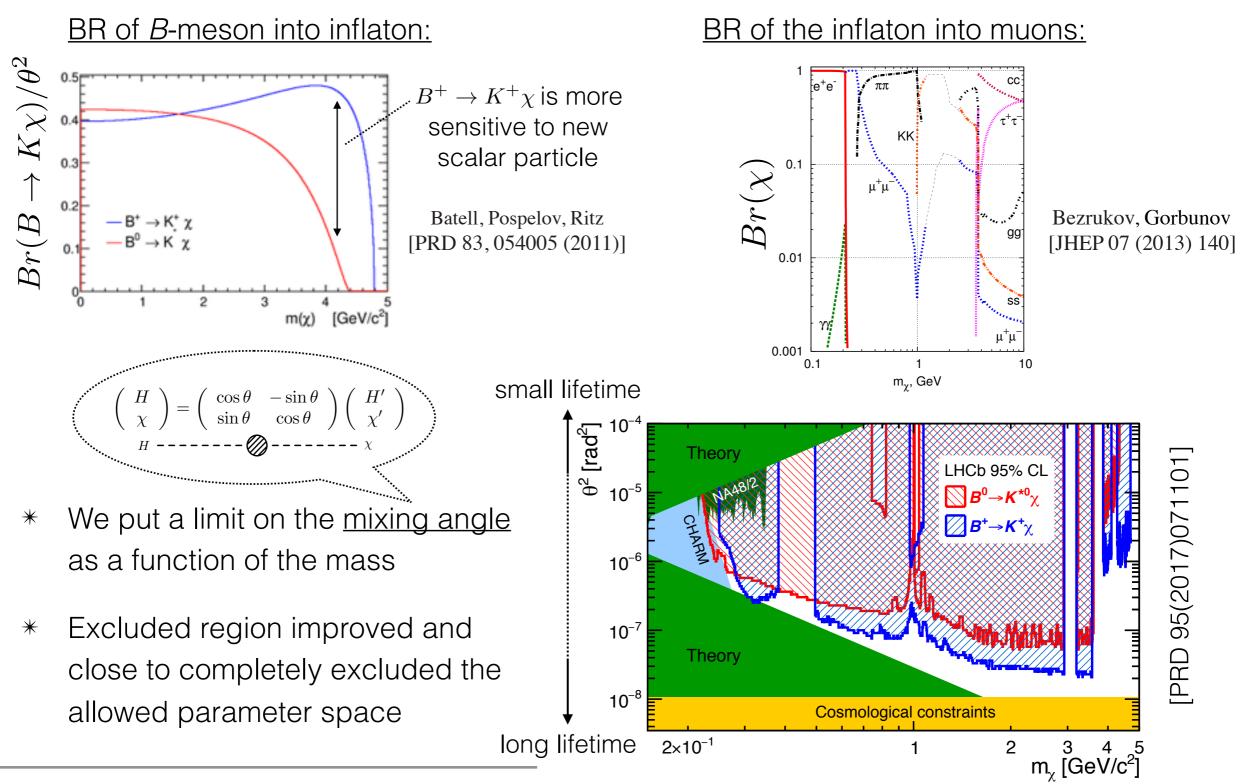
prompt affect only the low decay-time

Result: di-muon mass distribution



Zero events observed in the long decay-time region!

A. Mauri (University of Zurich)


95% CL excluded BR

- * We set a 95% CL upper limit as a function of the mass and lifetime
- * Limits are between 2×10^{-10} and 10^{-7}
- * Most sensitive limit for lifetime ~ 10 ps
 - For higher lifetimes candidates start to escape from the detector
 - Lower lifetimes are affected by higher background contamination
- * The precision on the upper limits is dominated by the statistical uncertainties

A. Mauri (University of Zurich)

Interpretation of the result: the inflaton model

Conclusion (I)

- 1. A search for an hypothetical new scalar particle in the decay $B^+ \to K^+ \chi (\to \mu^+ \mu^-)$ has been presented
- 2. No deviation from the background only hypothesis is observed
- 3. Upper limits set on $\mathcal{B}(B^+ \to K^+ \chi) \times \mathcal{B}(\chi \to \mu^+ \mu^-)$ between 2 x10⁻¹⁰ and 10⁻⁷ as function of mass and lifetime
 - Limits supersede previous search from LHCb
- 4. Interpretation of the result in term of the inflaton model
 - LHCb is able to exclude almost all the allowed parameter space for a light inflaton

Thank you!

backup

Background

- 1. SM di-muon resonances
 - * $\phi, J/\psi, \psi(2S), \psi(3770), \psi(4160)$: vetoed!
- 2. SM $B^+ \rightarrow K^+ \mu^+ \mu^-$
 - Irreducible, same final state and topology
 - Prompt!
 - * O(5k) events
- 3. Combinatorial background
 - Can be <u>displaced</u>!
- 4. Background from $B^+ \rightarrow D^0 X$
 - * $D^0 \rightarrow K\pi \rightarrow$ removed with additional PID requirement
 - * $D^0 \to \pi^+\pi^-, K^+K^- \to \text{negligible}$
- 5. Other B decays

- $\bullet \ B^0 \to K^* \mu^+ \mu^-$
- 6. $\Lambda \to p\pi, K_S^0 \to \pi^+\pi^-$: vetoed!

A. Mauri (University of Zurich)

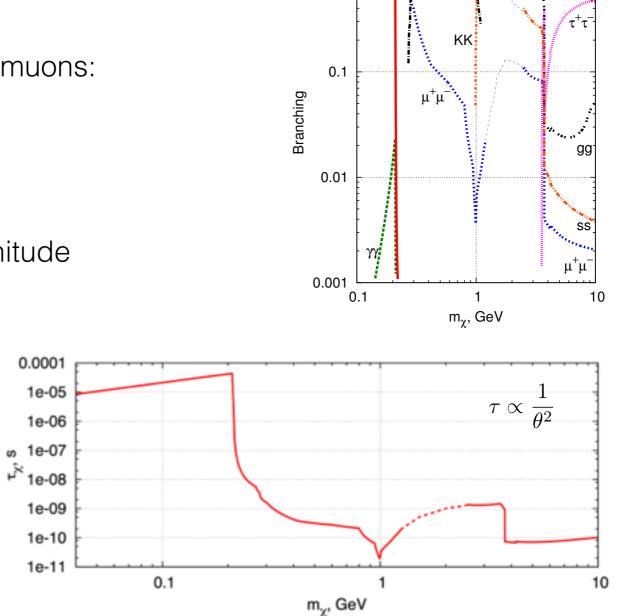
Background summary

Background	Variable	$\frac{\text{Mass region}}{(\text{MeV}/c^2)}$	Cut
$\begin{array}{c} \phi \rightarrow \mu^+ \mu^- \\ J/\psi \rightarrow \mu^+ \mu^- \end{array}$	$m_{\mu^+\mu^-} \ m_{\mu^+\mu^-}$	[985, 1055] [2946, 3176]	vetoed- 1^{st} bin vetoed
$\psi(2S), \psi(3770) \rightarrow \mu^+\mu^-$	$m_{\mu^+\mu^-}$	[3586, 3850]	vetoed
$\psi(4160) \rightarrow \mu^+ \mu^-$ $J/\psi \rightarrow \mu^+ \mu^-$ with $K^+ \leftrightarrow \mu^+$ swap	$m_{\mu^+\mu^-} \ m_{(K\mu\leftrightarrow\mu\mu)}$	$[4103, 4270] \\ [3000, 3200]$	vetoed- 1^{st} bin isMuon $(K^+)=0$
$B^+ \to D^0 (\to K\pi) X$ $K^0_S \to \pi^+ \pi^-$	$m_{(\mu\mu\leftrightarrow K\pi)}$ $m_{(\mu\mu\leftrightarrow\pi\pi)}$	$[1840, 1890] \\ [443, 523]$	$\begin{aligned} \text{ProbNNmu}(\mu) > 0.4 \\ \text{vetoed} \end{aligned}$
$\Lambda^0 \to p\pi$	$m_{(\mu\mu\leftrightarrow p\pi)}$	[1090, 1120]	vetoed

Decay-time binning

- detector resolution 3 bins of time of decay: *~0.2ps 1st bin: * High background + prompt: |t| < 1 ps</p> Sensitive to & short lifetime Contain all the $B^+ \rightarrow K^+ \mu^+ \mu^-$ events high efficiency O(5000) expected events 2nd bin: * Sensitive to **displaced** di-muon candidates: 1< t < 10 ps long lifetime low (combinatorial) background ► Low background O(1000) expected events & low efficiency 3rd bin: • events start to "zero background" search: t > 10 ps escape from the detector O(1) expected event
- * Bins combined afterwards into a single Likelihood $\mathcal{L} = \prod_{bins} \mathcal{L}_i$

Inflaton model


Interpretation of the result in the inflaton model.

- Branching ratio of the inflaton into muons: *
 - between 1 and ~1% •
- Lifetime: *
 - varies of several order of magnitude *

0.0001

1e-11

scale as $au \propto \frac{1}{\theta^2}$ •

e+e_

[Bezrukov, Light inflaton after LHC8 and WMAP9 results, JHEP 07 (2013) 140]

Systematics

- * Sources:
 - signal resolution
 - signal efficiency (MC size)
 - background mass-shape mis-modelling
 - Normalization branching ratio
- * The impact of these uncertainties on the excluded limit is found to be minimal (on average it is enhanced by only 2 %).

Source	Uncertainty
Signal resolution	$(1.5 \div 2)\%$
MC size	$(2 \div 6)\%$
MC lifetime reweighting	$(0 \div {}^{+0}_{-20})\%$
Background mass shape mismodelling	$0.08 \times \text{stat. err.}$
Normalization branching ratio	3~%