

### Hyper-Kamiokande

gigantic detector to confront ementary particle unification theories and the mysteries of the Universe's evolution

# The Hyper-Kamiokande

Experiment

**EPS 2017** 



- On behalf of the Hyper-Kamiokande Collaboration



# The Hyper-K Collaboration



















Collaboration formed in January 2015

~300 members and growing from 15 countries

### Hyper-Kamiokande design







### Optimized for cost and quick start

Total volume: 260kton × 2
Fiducial volume: 190kton × 2
(~×10 of Super-K per tank)
Start with one tank, staging
40% coverage with new sensor
×2 photon sensitivity
40,000 50cm ID PMTs
6,700 20cm OD PMTs

78 m

### **Broad Science Program with Hyper-K**

- Neutrino oscillation physics
  - Comprehensive study with beam and atmospheric neutrinos
     CPV, hierarchy ,θ<sub>23</sub> octant
- Search for nucleon decay
  - Possible discovery with  $\sim \times 10$  SK All visible modes  $p \rightarrow e^+ \pi^0 p \rightarrow \bar{\nu}K^+$
- Neutrino astrophysics
  - Precision measurements of solar V
  - High statistics measurements of SN burst V
  - Detection and study of relic SN neutrinos
- Geophysics (neutrinography of interior of the Earth)
- Maybe more (unexpected)



Extend highly successful program of Super-K

#### Please see:

Luis Labarga's talk: Neutrino oscillation physics at Hyper-Kamiokande 06/07/2017, 17:30

#### **Jost Migenda talk:**

Astroparticle Physics in Hyper-Kamiokande 08/07/2017, 10:45 (Astroparticle physics)

### 3 Generations of Kamioka Detector



### 3 Generations of Kamioka Detector





Nominal Design: 1<sup>st</sup> tank in Tochibora with the second tank following after 6 years

#### 260 kton Water Cherenkov Detector



# Upgraded J-PARC neutrino beam. New/upgraded near detectors



- The candidate site located in Tochibora, under Mt. Nijugoyama:
  - ~8km south from Super-K, 295km from J-PARC, 2.5°
     off-axis

Overburden ~650m (~1755 m.w.e.)







### J-PARC Neutrino Beam Upgrade



- Increase of protons per pulse from current 2.1x10<sup>14</sup> to 3.2x10<sup>14</sup>
- Power improvement largely achieved through rep rate increase from 0.4 to 0.8 Hz
- 750 kW will be achieved after 2018 Main Ring power supply magnet upgrade
- Increase of the J-PARC beam power to >1.3 MW by 2026 (Hyper-K start)

# Tokai to Hyper-Kamiokande



### ND280 (Upgrade)



Near detector ND280 to continue for Hyper-K

Use upgraded J-PARC neutrino beam line (same as T2K) with expected beam power > 1.3MW, 2.5° off-axis angle, narrow-band beam at ~600MeV

New Intermediate WC detector (at ~1.2 km) being investigated (E61, merger of TITUS and NuPrism)

- Off-axis angle spanning orientation
- Gd loading to measure neutron production



# The Hyper-Kamiokande Timeline



- 2018 2025 HK construction.
- 2026 onwards CPV study, Atmospherics v, Solar v, Supernova v, Proton decay searches, ...
- The 2<sup>nd</sup> identical tank starts operation 6yrs after the first one.

### Cavern & Tank

Cavern geological surveys and fine element analysis

undertaken

Excavation steps



3D model for stability analysis

(ex. at an excavation step)





Water containment: 3 layers of lining





HDPE liner automatically fastened on the concrete

Studded HPDE lining sheet





Three layers of liners are constructed simultaneously

→ Minimize the const. time

- 1. Outer water-proof sheet
- 2. Concrete linning
- 3. High Density Polyethylene (HDPE) lining

# Tank & PMT Support



# PMT support structure

- PMT support structure adopts a truss structure made of SUS members (angles)
- Seismic response analysis confirmed earth quake do not make damage to the detector
  - even if no water in the tank
  - Top/Barrel → Hung from the ceiling
  - Bottom → Set on the ground



### **Upgraded Photo sensors**

### Photo Multipliers (PMTs)



Venetian Blind





50cm HQE Box&Line PMT



The H

Efficiency x 2, Timing resolution x 2
 Pressure tolerance x 2 (>100m)
 Enhance n→vK<sup>+</sup> signal, solar y, neutro

Enhance  $p \rightarrow \overline{\nu} K^+$  signal, solar  $\nu$ , neutron signature of  $np \rightarrow d+\gamma(2.2 \text{MeV}),...$ 



### Other Developments:

Hybrid Photo Detectors (HPDs)



w/ 20mm o AD



Under viability study



# Single Photoelectron (PE) Charge [σ / peak] Supre-K 53% Box&Line 35% HPD 10% (Limited by preamp noise) y 2 PE

### **Single Photoelectron Time**

Photoelectron )

Loss in backscattering of e



### **OD, Pressure Vessels and MPMTs**

### **PMT Covers**

Prototype acrylic + stainless steel cover has been developed

Limit the flow of water into evacuated area if PMT implodes → avoid shockwave

Optimization and reduction of cost are under

consideration

60m/80m



Test in Furano, Hokkaido



Implosion test carried out at 60 m and 80 m water depths

No chain implosion observed

- **OD:** Working on designs for the OD including:
  - 3" and 5" PMTs from various manufacturers (good tts)
  - PMT housing and distributions
  - Use of wavelength shifting plates and housings

### Multi-PMTs (MPMTs)

- Working concept from KM3NeT but:
  - peripheral Inner Detector/Outer Detector.
  - lower pressure tolerance required.
  - ultrapure water.
- Large fiducial volume by directional sensitivity cut and less dead area.
- · No geomagnetism compensation.
- Many PMTs and readout channels.
- Acrylic pressure vessel:
  - low radioactive background
  - high optical transmittance
  - contain radon from PMT glass
  - pressure vessel for protection of PMTs and electronics.
  - same vessel and electronics for Inner and Outer (veto)Detector

Based on KM3NET optical module





20cm PMT for OD

1 of concepts

33 8cm(3-inch) PMTs



3" PMT
Dark box setup to measure dark and position dependent resolution

### **Electronics**

### Candidates for signal digitisation:

- 1. Charge to time converter with FPGA-based TDC (similar to sk)
- FADCC (~100MHz) +digital signal processing
- Digitisation based on switch capacitor array

#### Front-end electronics requirements:

- Wide Charge dynamic range
  - 0.1 ~ 1250 p.e.
- Good timing resolution
  - ~ Sub ns
- Self triggering
  - ~ Channel by channel
- Low power consumption
  - < 1W/ch</p>
- Place modules in the water



# DAQ

#### **DAQ** Requirements

- DAQ system will readout all the digitised hits
- Hits will be buffered in case of supernova
- Simple nhits trigger and more advanced triggering
- System needs to be fault tolerant

#### **ToolDAQ**

ToolDAQ is an open source modular scalable DAQ Framework that is being used to develop the DAQ software for Hyper-K.

**GPUs** have been used to develop some of the advanced trigger algorithms and integrated into the DAQ using ToolDAQ.

Preliminary results show a 5 order of magnitude performance increase

#### **ToolDAQ Features**

- Pure C++
- Fast Development
- Very Lightweight
- Modular
- Highly Customisable / Hot swappable modules
- Scalable (built in service discovery and control)

- Fault tolerant (dynamic connectivity, discovery, message caching)
- Underlying transport mechanisms ZMQ (Multilanguage Bindings)
- JSON formatted message passing
- Few external dependencies (Boost, ZMQ)



17

# **Hyper-K Calibration**

Hyper-Kamiokande detector calibrations has been designed based on Super-K calibrations

Feasible techniques/methods in Hyper-K

Several R&D projects are in progress to develop more sophisticated calibration systems and sources for Hyper-K

Photosensor Test Facility



Automated calibration system











# Hyper-K Sensitivity to δ<sub>cp</sub>

• If CP violation is near maximal, HK can make a  $5\sigma$  discovery in 2-4 years



- Near maximal CP violation, the HK precision is ~20° compared to ~8° near CP conserving values
- HK precision appears to hit a systematics limit around ~18° (see 3 tank case)





| error |       |  |
|-------|-------|--|
| δ=0°  | δ=90° |  |
| 7.2°  | 23°   |  |

# $\delta_{cp}$ Comparison with DUNE

Exclusion of  $\sin \delta_{cp} = 0$ 

- $> 8\sigma(6\sigma)$  for  $\delta_{cp} = -90^{\circ}(-45^{\circ})$
- = ~80% coverage of  $\delta_{cp}$  parameter space with >3 $\sigma$







### **CP with Korean detector (T2HKK)**



As the second tank will be staged, the concept of putting the second tank in Korea with a different baseline has been studied.

### Advantages of second tank in Korea:

- Measure CP effect at second oscillation maximum: 3 times larger
- Mass hierarchy sensitivity to compliment the measurement with atmospheric neutrinos
- Reduced backgrounds due to deeper site (>800m)



5σ Significance, Ordering Known



# Hierarchy in Korea



0.10 0.08 JP inverted 0.06 0.04 0.02 0.10 KD 0.08 norm al inverted 0.06 0.04 0.02 2.0 3.0 5.0 0.0 Neutrino Energy (GeV)





- Collaboration growing ~300 members from 15 countries
- Optimized detector tank configuration:
- Built on technology established with past/ongoing experiments
- Higher photodensity, improved PMTs.
- International R&D efforts in photo-sensors, calibration, geological surveys and electronics well underway
- CP violation:
- $\sim$   $\delta_{CP}$  precision 7°(23°) for  $\delta_{CP}$  =0°(90°)
- − 76% coverage  $δ_{CP}$  at 3σ
- A rich physics program (atmospherics, SN, solar,...)
- Construction to begin in 2018 with turn on in 2026

Many talks about Hyper-K physics:

Next: An Intermediate Water Cherenkov Detector for the T2K and Hyper-K

**Experiments** 

Later: Neutrino oscillation physics at Hyper-Kamiokande and p decay

Astro: Astroparticle Physics in Hyper-Kamiokande

### Summary of Hyper-K physics potential

| · ·                        |                                                   |                          |
|----------------------------|---------------------------------------------------|--------------------------|
|                            |                                                   | HK (1 tank)              |
|                            | δ precision                                       | 7°-23°                   |
| LBL<br>(1.3MW×10years)     | CPV coverage (3/5σ)                               | 76%/57%                  |
|                            | $\sin^2\!\theta_{23} 	ext{error} 	ext{(for 0.5)}$ | ±0.017                   |
| ATM+LBL                    | MH determination                                  | 3-7σ                     |
| (10 years)                 | Octant determination (30)                         | θ <sub>23</sub> -45° >2° |
| Proton Decay<br>(20 years) | e <sup>+</sup> π <sup>0</sup> (3σ)                | I×10 <sup>35</sup>       |
|                            | ⊽K (3σ)                                           | 3×10 <sup>34</sup>       |
| Solar                      | Day/Night (from 0/from KL)                        | 8σ/4σ                    |
| (10 years)                 | Upturn                                            | >3σ                      |
| Supernova                  | Burst (10kpc)                                     | 52k-79k                  |
| Supernova                  | Relic                                             | 3σ(5σ) in 5(15) years    |

# Extra

|               | $\sin \delta_{CP}$ = | = 0) exclusion | 68% uncert                | ainty of $\delta_{CP}$     |
|---------------|----------------------|----------------|---------------------------|----------------------------|
| Configuration | $> 3\sigma$          | $> 5\sigma$    | $\delta_{CP} = 0^{\circ}$ | $\delta_{CP} = 90^{\circ}$ |
| 1 tank        | 76%                  | 57%            | $7.2^{\circ}$             | 23°                        |
| Staging       | 78%                  | 62%            | $7.2^{\circ}$             | 21°                        |
| PTEP [168]    | 76%                  | 58%            | 7°                        | 19°                        |

# Uncertanties

# Systematic uncertainties

Systematic uncertainty on number of Ve events at T2K

$$18\%(2011) \rightarrow 9.9\%(2012) \rightarrow 8.8\%(2013) \rightarrow 6.8\%(2014) \rightarrow 5.5\%(2016)$$

Target systematic uncertainty in T2K-II: ~4%

With further improvements foreseen in

- Cross section with near and intermediate detector
- Detector uncertainties with better calibration

Size of systematic uncertainties assumed in HK study:

|       | v m | ode | anti-∨ | mode |
|-------|-----|-----|--------|------|
|       | Ve  | νμ  | Ve     | νμ   |
| Total | 3.2 | 3.6 | 3.9    | 3.6  |



With correlation between energy/flavor bins taken into account based on the T2K error matrix

### Extrapolation from T2K experience

- Beam flux + near detector constraint
  - Conservatively assumed to be the same
- Cross section uncertainties not constrained by ND
  - Nuclear difference removed assuming water measurements
- Far detector
  - Reduced by increased statistics of atmospheric V control sample and fundamental detector response understanding with improved calibration

Uncertainty on the expected number of events at Hyper-K (%)

|               | v mode |     | anti-∨ | mode |
|---------------|--------|-----|--------|------|
|               | Ve     | νμ  | Ve     | νμ   |
| Flux&ND       | 3.0    | 3.3 | 3.2    | 3.3  |
| XSEC model    | 0.5    | 0.9 | 1.5    | 0.9  |
| Far Det. +FSI | 0.7    | 1.0 | 1.5    | 1.1  |
| Total         | 3.2    | 3.6 | 3.9    | 3.6  |

- Further reduction by new near detectors under study
- Benefit from experience with T2K(-II)



### Hyper-Kamiokande systematic errors

# Estimations and simulations will be based on T2K and SK studies with real data

v-mode  $v_e$  candidates .

| T | 2 | R |
|---|---|---|
| _ |   |   |

| $\overline{v}$ -mode $\overline{v}_e$ candidates $\square$ |
|------------------------------------------------------------|
|------------------------------------------------------------|

| Source of uncertainty            | $\delta N_{SK}/N_{SK}$ |
|----------------------------------|------------------------|
| SKDet+FSI+SI                     | 3.48%                  |
| SKDet only                       | 2.28%                  |
| FSI+SI only                      | 2.63%                  |
| Flux                             | 3.67%                  |
| 2p-2h (corr)                     | 3.90%                  |
| 2p-2h bar (corr)                 | 0.05%                  |
| NC other (uncorr)                | 0.15%                  |
| NC 1gamma (uncorr)               | 1.47%                  |
| XSec nue/numu (uncorr)           | 2.61%                  |
| XSec Tot (corr)                  | 4.26%                  |
| XSec Tot                         | 5.21%                  |
| Flux+XSec (ND280 constrained)    | 2.90%                  |
| Flux+XSec (All)                  | 4.17%                  |
| Flux+XSec+SKDet+FSI+SI           | (5.45%)                |
| Flux+XSec+SKDet+FSI+SI (pre-fit) | 12.1%                  |
| Oscillations                     | (4.20%)                |
| All                              | 6.91%                  |
| All (pre-fit)                    | 12.6%                  |

| Source of uncertainty            | $\delta N_{SK}/N_{SK}$ |
|----------------------------------|------------------------|
| SKDet+FSI+SI                     | 3.95%                  |
| SKDet only                       | 3.11%                  |
| FSI+SI only                      | 2.43%                  |
| Flux                             | 3.84%                  |
| 2p-2h (corr)                     | 3.04%                  |
| 2p-2h bar (corr)                 | 2.36%                  |
| NC other (uncorr)                | 0.33%                  |
| NC 1gamma (uncorr)               | 2.95%                  |
| XSec nue/numu (uncorr)           | 1.46%                  |
| XSec Tot (corr)                  | 4.46%                  |
| XSec Tot                         | 5.55%                  |
| Flux+XSec (ND280 constrained)    | 3.20%                  |
| Flux+XSec                        | 4.60%                  |
| Flux+XSec+SKDet+FSI+SI           | (6.28%)                |
| Flux+XSec+SKDet+FSI+SI (pre-fit) | 13.5%                  |
| Oscillations                     | 4.00%                  |
| All                              | (7.38%)                |
| All (pre-fit)                    | 14.1%                  |

### Goal

Reduction from ~ 6-7% in T2K to ~3-4% in T2HK for the expected number of events in HK. Beam Flux, XSections, HKDet + New near detectors constraint.

# Near detectors

### Near detector measurements

- Cross section measurements with large statistics and high quality data
  - Larger phase space to reduce model dependence
  - Expected number of events after selection per 10<sup>21</sup> POT:
    - ~40k  $V_{\mu}$  CC events /Iton @ 280m
    - $\bullet$  ~IM  $\nu_{\mu}$  and ~20k  $\nu$  events for 2kton intermediate detector
- Exotic physics searches
  - Sterile neutrino
  - Lorentz/CPT violation
  - Heavy neutral lepton
  - ...



"WAGASCI" 3D-grid scintillator concept



33

# Oscillation

**Expected Events** 

10 yrs data taking.



 $\delta_{CP} = 0^{\circ}$ , 180° can be distinguished using shape information.

| δ=0                           | Signal $(v_{\mu} \rightarrow v_e \text{ CC})$ | Wrong sign appearance | $ u_{\mu}$ , $\overline{v}_{\mu}$ CC | Beam $v_e, \bar{v}_e$ contamination | NC  |
|-------------------------------|-----------------------------------------------|-----------------------|--------------------------------------|-------------------------------------|-----|
| V<br>beam                     | 2300                                          | 21                    | 10                                   | 362                                 | 188 |
| $\overline{\mathcal{V}}$ beam | 1656                                          | 289                   | 6                                    | 444                                 | 274 |

|                             | $ u_{\mu}$ , $\overline{v}_{\mu}$ CCQE | ν <sub>μ</sub> CC<br>nonQE | Others |
|-----------------------------|----------------------------------------|----------------------------|--------|
| V<br>beam                   | 8947                                   | 4444                       | 721    |
|                             | 12317                                  | 6040                       | 859    |
| $ar{oldsymbol{ abla}}$ beam | 12017                                  | 0040                       | 659    |

# $\theta_{23}$ and $\Delta m^2_{32}$

 $\delta(\Delta m^2_{32}) \sim 1.4 \times 10^{-5} \text{eV}^2$ 

→ Mass hierarchy sensitivity in combination with reactor

$$\delta(\sin^2\theta_{23})\sim 0.015$$
 (for  $\sin^2\theta_{23}=0.5$ )  
  $\sim 0.006$  (for  $\sin^2\theta_{23}=0.45$ )

→Octant determination, input to models



#### Normal mass hierarchy



#### Normal mass hierarchy



# Mass Hierarchy and Octant Sensitivity: Atmospherics + Beam 1,5,10 yr

Variety of physics with atmospheric v:

- MH,  $\theta_{23}$  octant, CP
- Sterile neutrino , LV, etc With atmospheric alone,
- mass hierarchy sensitivity
- >3 $\sigma$  octant determination for  $|\theta_{23}|$  -45°|>8°



Mass hierarchy determination



θ<sub>23</sub> octant determination

| 10 yrs |                      | Mass Hierarchy (σ) |          |  |
|--------|----------------------|--------------------|----------|--|
| NH     |                      | Atm                | Atm+Beam |  |
| PTEP   | θ <sub>23</sub> =0.4 | 3.8                | 6.9      |  |
|        | θ <sub>23</sub> =0.6 | 8.4                | 9.9      |  |
| 2Tanks | θ <sub>23</sub> =0.4 | 2.2                | 5.3      |  |
|        | θ <sub>23</sub> =0.6 | 5.2                | 6.9      |  |

| 10 yrs                | Octant (σ) |          |
|-----------------------|------------|----------|
| NH                    | Atm        | Atm+Beam |
| θ <sub>23</sub> =0.45 | 3.6        | 7.2      |
| θ <sub>23</sub> =0.55 | 2.7        | 4.0      |
| θ <sub>23</sub> =0.45 | 2.2        | 5.8      |
| θ <sub>23</sub> =0.55 | 1.7        | 3.7      |

21

# Proton decay

# Proton decay sensitivity



- Improved sensitivity with BG free search!
  - ~>  $10^{35}$  years for  $p \rightarrow e^+ \pi^0$
  - >3×10<sup>34</sup> years for p $\rightarrow \nu K^+$

Proton decay  $p \rightarrow e^+ \pi^0$  is a favoured model of many GUTs.



Similar analysis as in SK but with neutron tagging (remove events with a tagged neutron) thanks to improved PMTs.

Best discovery potential for GUT signal!

# BG suppression in proton decay

- Neutron tagging with hydrogen capture (2.2MeV Y)
  - Tag and suppress atmospheric V background
  - Already in use for p-decay search in SK-4 (~20% eff.)
- Extrapolated to Hyper-K with 40% high-QE PMT
  - 70% tagging eff. possible → assumed in study
- Gd option also under consideration



## Other Proton Decay Sensitivities



Proton decays into a lepton and a kaon are one of the most prominent features of Supersymmetric Grand Unified Theories.

 $10^{34}$ 



3σ discovery potential





# Solar & SN

# Day/Night asymmetry of solar V

- ~2 $\sigma$  tension of  $\Delta$ m<sup>2</sup><sub>21</sub> by solar and KamLAND
  - Measurement with V<sub>e</sub>
     only possible w/ solar V
- Day-Night asymmetry due to Earth matter effect sensitive to  $\Delta m^2_{21}$ 
  - ~4% for solar best
  - ~2% for KL best
- ~5σ resolution expected with 0.3% syst error (0.5% achieved by SK)





# Spectrum upturn of solar V



Various non-standard models



- Spectrum upturn in low energy not yet seen
  - Various non-standard scenario possible
- >5σ possible with BG/ calibration similar to SK
  - Low E threshold w/ high photon efficiency essential



## Supernova burst neutrinos

 Measurements of neutrino flavor, energy, time profile will provide detailed information of corecollapse supernova

**Expected number of event** 

98k~136k ev (IBD) 4.2k~5k ev (ve ES) (12~80 for neutronization) 160~8200 ev (ve CC) 1300~7800 ev (ve CC)

Livermore simulation

Totani, Sato, Dalhed, Wilson, ApJ. 496 (1998) 216



43

### SN relic neutrinos







- Neutrinos from past
   SN fill our universe
  - History of star formation and black hole generation process encoded
- BG suppression with more light
  - → Measurement with
  - >5σ signal

Investigate dim-SN's and BH formation

- · Use neutron tagging.
- Expected events in HK in 10y:
   ~98 ± 20 (4.8σ).

#### Install Gadolinium



# Other physics

### Indirect DM searches

- Unique sensitivities, especially for low mass region
- Improve ×3-10 over SK limit

#### From Galactic center





## Other science with atmospheric V

Provides neutrinos with various energy, flight length, and flavor

- V<sub>T</sub> cross section measurement
- Sterile neutrino
- Lorentz violation
- Geophysics
  - Information on the chemical composition of Earth's outer core using matter effect



Sensitivity to outer core chemical composition (10Mtyr)



# DAQ

# **ToolDAQ Framework**

ToolDAQ is an open source DAQ Framework developed here in the UK.

It was deigned to incorporate the best features of other frameworks whilst:

- Being very easy and fast to develop DAQ implementations in a very modular way.
- Including dynamic service discovery and scalable network infrastructure to allow its use on large scale experiments.

#### **Features**

- Pure C++
- Fast Development
- Very Lightweight
- Modular
- Highly Customisable / Hot swappable modules
- Scalable (built in service discovery and control)
   Few external dependencies (Boost, ZMQ)

- Fault tolerant (dynamic connectivity, discovery, message caching)
- Underlying transport mechanisms ZMQ (Multilanguage Bindings)
- JSON formatted message passing

### **GPU TPU Development**

Test Vertices Algorithm Processing time





- GPU reduces the time with respect to CPU by 4 orders of magnitude
- ▶ ideal data chunk = 1 ms
- need 400 GPUs for real-time processing
- projected cost  $\approx 400k\$$

#### Features:

- FEEs can be rerouted to be read out by any RBU
- Broker assisted communication between RBU TPU and EBU
- Master slave Broker redundancy
- Dynamic routing and fault tolerance (hot swapable)
- Ability to switch on and off parts of the detector from the data stream
- TPU farm (GPU based)
- Supernova buffer
- Centralised run control and monitoring/logging



# Other

### Spallation BG in Hyper-K



High density (~40% P.C.) with HQE PMT can reduce ~1/3, the effect of Spallation BG becomes similar as SK.