Charmonium production in pPb and PbPb collisions at 5.02 TeV with CMS

Andre Ståhl on behalf of the CMS Collaboration

Laboratoire Leprince-Ringuet, École Polytechnique, France

EPS-HEP Conference 2017

Charmonia in Pb-Pb Collisions

Charmonia (cc̄ mesons) are produced in the early stages of the collision

The Quark-Gluon Plasma is expected to modify the charmonia production

Charmonia are good probes of the medium evolution

Besides Hot Nuclear Matter effects, we also need to consider Cold Nuclear Matter effects

07/06/17

CMS

Charmonia in p-Pb Collisions

- Study of J/ψ in pPb allows to probe Cold Nuclear Matter effects:
 - > Initial state energy loss
 - > Nuclear PDF modifications
 - > Nuclear absorption

Excited States in HI Collisions

- The study of $\psi(2S)$ brings additional information:
 - > Excited states are **less tightly bounded** than the 1S state (J/ψ)
 - More suppressed in the QGP compared to J/ψ
 - Models including Cold Nuclear Matter effects predict similar suppression as for J/ψ

Prompt and Non-Prompt Charmonia

• Prompt Charmonia:

Directly affected by the QGP

Outline

- J/ ψ in pPb at 5 TeV
 - Eur. Phys. J. C 77 (2017) 269
- $\psi(2S)$ from pp to pPb at 5 TeV
 - HIN-16-015

- Relative modification of prompt J/ ψ and ψ (2S) from pp to PbPb at 5 TeV
 - Phys. Rev. Lett. 118, 162301 (2017)

Outline

J/ψ in pPb at 5 TeV

Prompt J/ψ R_{pPb}

- Lower p_T : R_{pPb} decreases with y_{CM}
- Higher p_T : $R_{_{DPb}}$ above unity for the whole $y_{_{CM}}$ range
- nPDF theory predictions slightly lower than data

Forward-Backward J/ψ in pPb

- Decrease of $\mathsf{R}_{_{\mathsf{FB}}}$ for increasing event activity
- Nuclear matter effects enhanced at larger event activity

EPS-HEP 2017

Forward-Backward J/ψ in pPb

- CMS measurements extend ALICE and LHCb ones to higher $\ensuremath{p_{\scriptscriptstyle T}}$
- Results consistent with ATLAS

EPS-HEP 2017

$\psi(2S)$ from pp to pPb at 5 TeV

Prompt ψ(2S) in pPb

• Ratio: R_{pPb} ($\psi(2S)$) < R_{pPb} (J/ ψ) especially at backward (Pb-going direction)

- Different suppression between J/ ψ and ψ (2S) could be consistent with final state inelastic interactions of ψ (2S) mesons with comoving particles in the medium
- CMS measurements bring stringent constraints to the origin of charmonium suppression in pPb collisions at LHC

Prompt J/ψ vs ψ(2S) from pp to PbPb at 5 TeV

$\psi(2S)$ vs J/ ψ modification in PbPb

Double ratio of Charmonia in PbPb and pp at 5 TeV:

- Many corrections and uncertainties cancel (experimental and theoretical)
- Relative modification of $\psi(2S)$ and J/ψ in PbPb

Ratio of $\psi(2S) / J/\psi R_{AA} vs p_T$

• $R_{AA}(\psi(2S)) / R_{AA}(J/\psi) < 1$ in all bins $\rightarrow \psi(2S)$ is more suppressed than J/ψ

- No $\boldsymbol{p}_{\scriptscriptstyle T}$ dependence within uncertainties

EPS-HEP 2017

ψ(2S) / J/ψ vs Centrality

- $\psi(2S)$ is more suppressed than J/ψ at 5.02 TeV
- No strong N_{part} dependence at 5.02 TeV
- Double ratio at 5.02 TeV consistently lower than at 2.76 TeV in 1.6 < y < 2.4, $3 < p_T < 30$ GeV/c, especially for most central collisions (~3 s.d. in 0-100%)

CMS

EPS-HEP 2017

ψ(2S) / J/ψ vs Centrality

• A sequential regeneration model of charmonia states in the fireball evolution might explain the smaller suppression of $\psi(2S)$ compared to J/ ψ observed by CMS in PbPb at 2.76 TeV

07/06/17

• Due to the increase in transverse flow from 2.76 TeV to 5.02 TeV, the model predicts that more regenerated J/ ψ are produced at $p_{\tau} > 3$ GeV/c, thus suppressing the double ratio at 3 < p_{τ} < 30 GeV/c, in agreement with the CMS measurements

CMS

SUMMARY

Probing Hot Nuclear Matter Effects:

Probing Cold Nuclear Matter Effects:

07/06/17

Stay tuned for more CMS results!

Thank you for your attention!

CMS Detector

CMS

EPS-HEP 2017

Prompt and Non-Prompt Charmonia

Two techniques to separate components:

1. 2D fits of dimuon mass and pseudo-proper decay length

2. Rejecting non-prompt applying a cut on pseudo-proper decay length

Data-based corrections applied to remove non-prompt contamination

- Using reverted $\ell_{_{\!\!J\!/\Psi}}$ cut
- MC efficiency of $l_{\rm J/\Psi}$ cut

Prompt J/ψ in pPb

Prompt J/ψ in pPb

Prompt ψ(2S) in pPb

5

CMS

EPS-HEP 2017

Prompt ψ(2S) in pPb

CMS

CMS-PAS-HIN-16-015

6

Sequential Regeneration

- ~7% increase of initial temperature
- ~10% more shadowing
- ~40% increase of charm cross section

CMS

EPS-HEP 2017