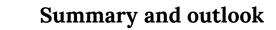
Measurements of the Y meson production in Au+Au collisions at the STAR experiment

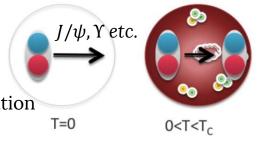
Oliver Matonoha

STAR

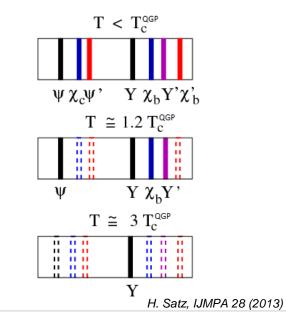
for the STAR collaboration Czech Technical University in Prague oliver.matonoha@fjfi.cvut.cz EPS-HEP 2017 Venice, Italy 5–12 July 2017


2

- Heavy quarkonia as a QGP probe
- The STAR experiment
- **3** Latest Y results in p+p, p+Au, and Au+Au collisions at RHIC


5

Comparison with LHC results and models



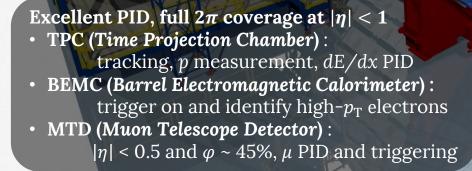
<u>Heavy quarkonia in QGP</u>

- J/ψ , Υ etc. are good candidates to probe QGP
 - $c\bar{c}$, $b\bar{b}$ pairs created mostly before the QGP formation
 - Production cross-section in p+p collisions can be calculated based on pQCD
- Dissociation by colour screening T. Matsui, H. Satz, PLB 178 (1986) 416
 - Quarkonium expected to *dissociate* when its radius exceeds the Debye radius: $r_{\text{Debye}} \propto 1/T$
- Sequential melting A. Mocsy, EPJ C61 (2009) 705
 - Dissociation depends on the quarkonium binding energy
 - Different states expected to melt at different temperatures
 - QGP thermometer

T_C<T

Other effects also play a role

- Other phenomena complicate the measured quarkonium suppression
- Statistical recombination
 - Coalescence of deconfined quarks at QGP phase boundary
- Cold nuclear matter (CNM) effects
 - Initial state: shadowing, energy loss
 - Final state: inelastic interactions with hadrons
 - \rightarrow nuclear break-up
 - \rightarrow co-mover absorption
 - Can be studied in p+A collisions
- Feed-down


ndary		RHIC 200 GeV	LHC 2.76 TeV
	<i>#cc̄ /</i> event	13	115
	$\#b\bar{b}$ / event	0.1	3

For $\Upsilon's$ at RHIC $\sqrt{s_{NN}} = 200 \text{ GeV}$: • no recombination A. Emerick, X. Zhao, R. Rapp, E

- **NO recombination** *A. Emerick, X. Zhao, R. Rapp, EPJ A48 (2012) 72*
- less co-mover absorption Z. Lin, C. Ko, PLB 503 (2001) 104

 \rightarrow cleaner probe!

I. Das, QM2015, https://indico.cem.ch/event/355454/contributions/838966/

STAR experiment

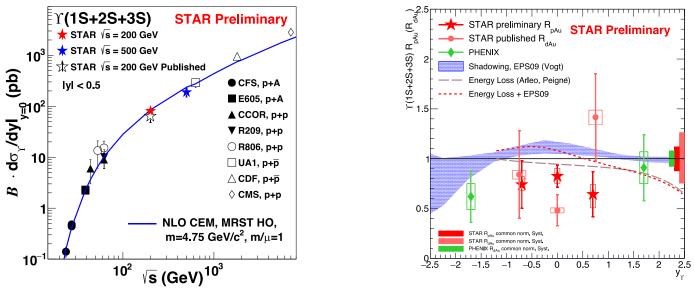
RHIC (Relativistic Heavy Ion Collider)

RHIC

STAR

Upton, NY

STAR


BEMC

TPC

MTD

Magnet

Results from p+p and p+Au collisions

• **p+p** : precise baseline for comparison with Au+Au collisions

→ improved precision: $\sigma = 64 \pm 10$ (stat.) ± 14 (syst.) pb $\rightarrow 81 \pm 5$ (stat.) ± 8 (syst.) pb


 \rightarrow consistent with the Colour Evaporation Model (CEM) prediction

A.Frawley, T.Ullrich, R.Vogt, PR 462 (2008) 125

• **p+Au**: quantification of CNM effects with $R_{pAu} = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)

8

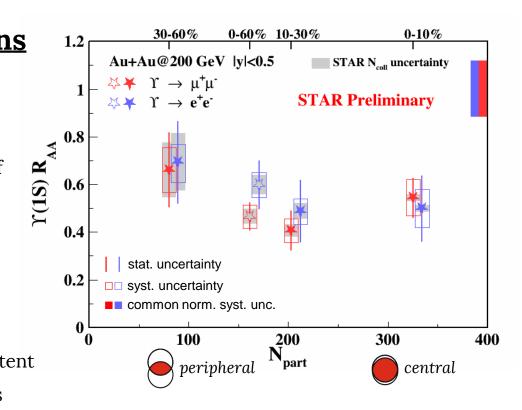
Signal in Au+Au collisions

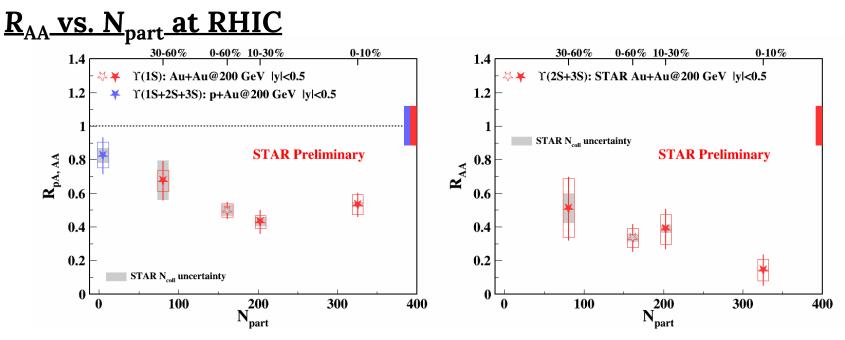
→ combinatorial background (estimated as $N_{l^+l^+} + N_{l^-l^-}$)

→ Drell-Yan di-leptons, $B\bar{B}$ semi-leptonic decays

EPS-HEP 2017, Y production at STAR

Results from Au+Au collisions

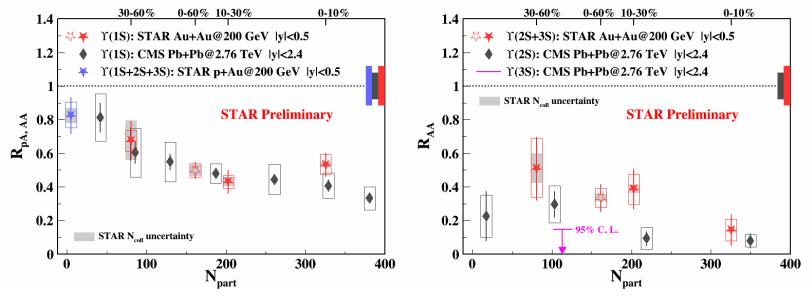

• Nuclear modification factor


 $R_{\rm AA} = \frac{\sigma_{\rm inel}}{\langle N_{\rm coll} \rangle} \frac{{\rm d}^2 N_{\rm AA}/dp_{\rm T} dy}{{\rm d}^2 \sigma_{\rm pp}/dp_{\rm T} dy} \quad \text{as a function of}$

mean number of participants N_{part}

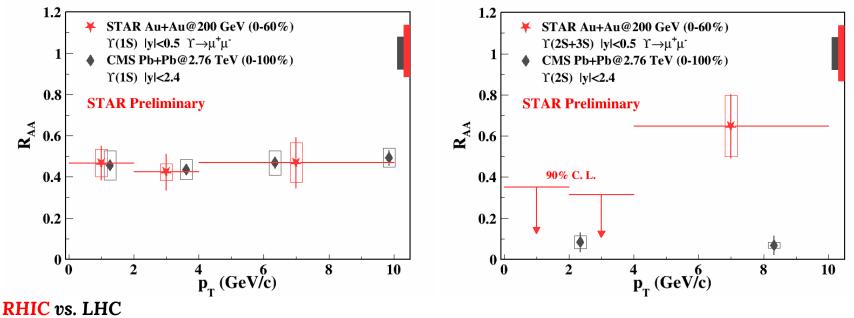
- \bigstar is a combination of \bigstar results
- **Di-muon** and **di-electron** results consistent with each other within the uncertainties

 \rightarrow results combined for increased statistical precision



• $\Upsilon(2S), \Upsilon(3S)$ states **more suppressed** than $\Upsilon(1S)$ in central collisions

Compare RHIC with LHC

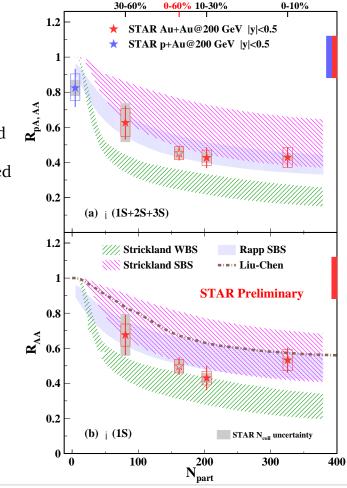


- $\Upsilon(2S), \Upsilon(3S)$ states **more suppressed** than $\Upsilon(1S)$ in central collisions
- Comparison with LHC: CMS, PRL 109 (2012)
 - \rightarrow solid consistency for $\Upsilon(1S)$

→ hint of **less suppression** for $\Upsilon(2S)$, $\Upsilon(3S)$ at RHIC than at LHC

Oliver Matonoha (CTU)

Suppression vs $p_{\rm T}$



- Consistent for $\Upsilon(1S)$
- Signs of **less suppression** at high- $p_{\rm T}$ for $\Upsilon(2S), \Upsilon(3S)$

Comparison with models

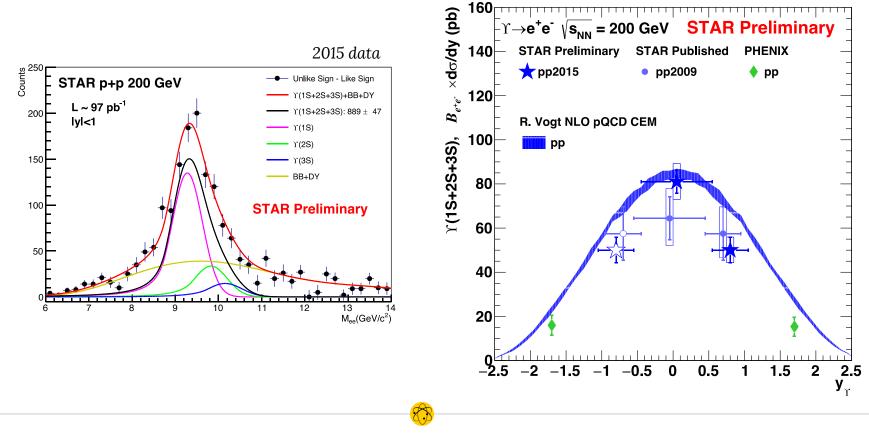
- Strickland, Bazov : NPA 879 (2012) 25
 - No CNM, no regeneration
 - SBS (Strongly Binding Scenario): fast dissociation–potential based on internal energy
 - WBS (Weakly Binding Scenario): slow dissociation-potential based on free energy
- Liu, Chen, Xu, Zhang : PLB 697 (2011) 32
 - No CNM
 - Dissociation only for excited states, suppression of ground state due to feed-down
- Emerick, Zhao, Rapp : EPJ A48 (2012) 72
 - Includes CNM, SBS case

 \rightarrow SBS models favoured by the data

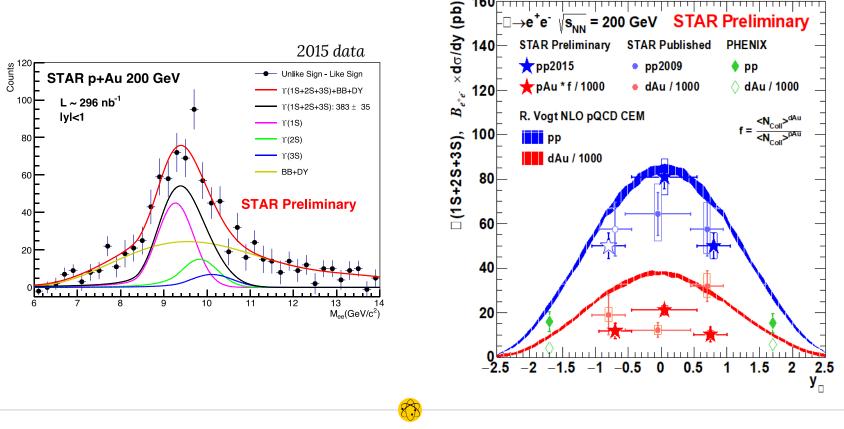
EPS-HEP 2017, Y production at STAR

<u>Summary</u>

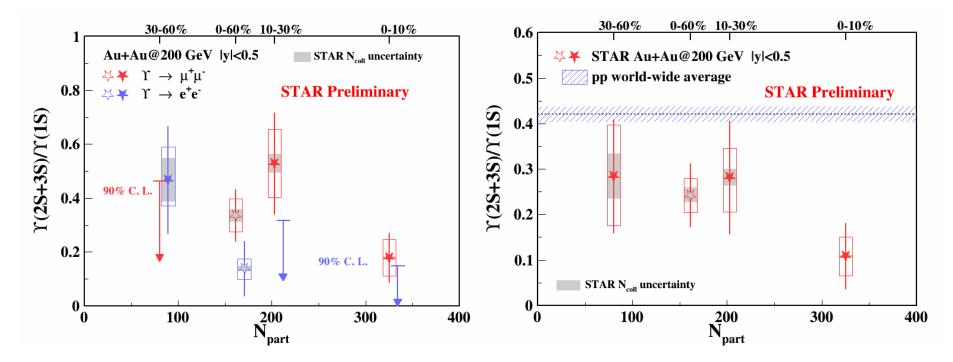
- p+p
 - Improved precision; consistent with the CEM model
- p+Au
 - Quantification of the CNM effect: $R_{pAu} = 0.82 \pm 0.10$ (stat.) $^{-0.07}_{+0.08}$ (syst.) ± 0.10 (global)
- Au+Au
 - $\Upsilon(1S)$ suppression at RHIC is similar to that at the LHC
 - Direct $\Upsilon(1S)$ may be suppressed; better understanding of CNM effects and feed-down contribution is needed
 - $\Upsilon(2S), \Upsilon(3S)$ more suppressed than $\Upsilon(1S)$ in the most central collisions (sequential melting)
 - $\Upsilon(2S), \Upsilon(3S)$ seem to be less suppressed at RHIC than at LHC
- Results can be used to impose constraints on the QGP temperature at RHIC


<u>Outlook</u>

• Analyses from other Au+Au data are underway \rightarrow increase in statistics by about a factor of 2!


Thanks for your attention!

Results from p+p



<u>Results from p+Au</u>

160₁

Excited-to-ground-state ratio

