Suppression of charmonia in pA and AA collisions

M. Siddikov

(in collaboration with B. Kopeliovich, Ivan Schmidt)

Partially based on:

PRC 95 (2017) 065203

PRC 91 (2015), 024911

NPA 931 (2014), 601

J/ψ in pp collisions

Color Singlet Model (1980's)

Collinear factorization:

- Reasonable for p_T-integrated observables
- Incorrect $1/p_T$ behaviour for $p_T \gg m_{J/\psi}$

Large-p_T description

(see QWG review, Eur.Phys.J. C71 (2011) 1534)

- Phenomenological approaches (Color Octet, NRQCD)
- k_T-factorization instead of collinear

Sizeable contribution from other mechanisms

• Co-production $(J/\psi + \bar{Q}Q, ...)$

(PRL 101 (2008) 152001)

Quark and gluon fragmentation
 (S. Baranov, B. Kopeliovich, 2017 in preparation)

Nuclear effects for J/ψ in pA collisions

Data & experiment for J/ψ

- Heavy quark limit: should vanish
- R_{pA} increases when $x \to 1$ due to energy loss
- Compatible with E866, PHENIX and ALICE data

$\psi(2S)$ suppression

• Why $\psi(2S)$ is more suppressed than J/ψ ?

(Major challenge for many approaches which describe $J/\psi, \ \Upsilon$ suppression).

J/ψ in dipole approach

CSM in dipole approach

ullet Same diagrams as in k_T factorization, we just express everything in terms of dipole framework.

Large- m_Q limit

• Dipole cross-section related to k_{\perp} uPDF, e.g. for color singlet

$$\sigma_{d}\left(\mathbf{x},\;\mathbf{r}_{\perp}\right) = \int \frac{d^{2}k_{\perp}}{(2\pi)^{2}} \mathcal{F}\left(\mathbf{x},\;\mathbf{k}_{\perp}\right) \left(1 - \mathrm{e}^{\mathrm{i}\mathbf{k}_{\perp}\cdot\mathbf{r}_{\perp}}\right).$$

- Color octet dipole cross-section could be expressed as linear combinations of color singlets
- Major advantage: more convenient for description of nuclear absorption.

Reasonable description of pp data

J/ψ production cross-section in the dipole approach Meson WFs

$$\frac{d\sigma_{pp}}{dy} = \frac{9}{8} g(x_{1}(y)) \int d\alpha_{G} d\alpha_{1} d^{2} r_{1} d\alpha_{2} d^{2} r_{2} d^{2} \rho \Psi_{M}^{*}(\alpha_{1} r_{1}) \Psi_{M}(\alpha_{2} r_{2}) \times \\
\times \sum_{n,n'=1}^{6} \eta_{n} \eta_{n'} \operatorname{Tr} \left[\Lambda_{M} \Phi_{g \to \bar{Q}Q} \left(\epsilon_{n}, \vec{r}_{n}^{(1)} \right) \Phi_{Q \to Qg} \left(\delta_{n}, \vec{\rho}_{n} \right) \right] \\
\times \operatorname{Tr} \left[\Lambda_{M} \Phi_{g \to \bar{Q}Q} \left(\epsilon_{n'}, \vec{r}_{n'}^{(2)} \right) \Phi_{Q \to Qg} \left(\delta_{n'}, \vec{\rho}_{n'}, \vec{\rho}_{n'} \right) \right]^{*} \\
\times \underbrace{\sigma(x_{2}, \vec{r}_{n} - \vec{r}_{n'})}_{\text{dipole cross-section}}$$

- Λ_M -spin projector on meson WF
- $ullet \Phi_{g o ar{Q}Q}, \Phi_{Q o Qg}$ are evaluated perturbatively $(m_c o \infty \text{ limit})$
- $\vec{r}_{n}^{(1,2)} \approx \vec{r}_{1,2} + \delta \vec{r}_{n} (\alpha, \alpha_{G}, r, \rho), \qquad \vec{\rho}_{n} \approx \vec{\rho} + \delta \vec{\rho}_{n} (\alpha, \alpha_{G}, r, \rho)$
- Sum over 6 diagrams in amplitude and its conjugate is implied

ullet For $p_{\mathcal{T}}$ -dependent cross-section, additional Fourier over difference of dipole impact parameter $\Delta \vec{b} = \vec{b}_1 - \vec{b}_2 \neq 0$; terms $\delta \vec{r}_n$, $\delta \vec{\rho}_n$ also depend on $\vec{b}_{1,2}$

J/ψ production in pA

Absorptive corrections

ullet Reduction of g flux before J/ψ production

$$\sim \exp\left(-rac{\sigma_4\left(x,\,ec{r}_1,\,ec{r}_2,\,ec{
ho}
ight)}{2}\int_z^{+\infty}
ho_A(b,\zeta)d\zeta
ight)$$

 $\vec{r}_{1,2}$ is the dipole size, $\vec{\rho}$ is the transverse coord. of emitted gluon

ullet Attenuation of produced ar Q Q dipoles,

$$\sim \exp\left(-rac{\sigma_{car{c}}(x,\,r)}{2}\int_{z}^{+\infty}
ho_{A}(b)d\zeta
ight)$$

Inelastic multiple pomeron exchanges

(see PRC 72, 054606 for more details)

- Due to differences in nuclear suppression of higher Fock states of proton
- Formally factorization breaking terms
- ullet Similar to energy loss correction, suppresses gluon PDFs for $x_F o 1$

Gluon shadowing

- Gluon fluctuation $g \to \bar{c}c$ is the dominant Fock state, yet there are contributions $\bar{c}cg$, $\bar{c}cgg$, ...
- Higher Fock states have shorter coherence time due to heavier mass

$$\Delta M_{c\bar{c}g} \sim \frac{k_{g\perp}^2}{x_g}$$

10 + 1 = + 990

 Attenuation of gluon densities & dipole cross-sections,

$$\sigma_d \to R_g(x_2) \, \sigma_d$$

• Coherence length $I_c \sim {\rm const}/x_2$, sizeable at LHC

All the mentioned corrections suppress R_{pA} with increase of energy

J/ψ production in pA

2-nucleon contribution

Opacity expansion:

$$\langle T_A(b) \rangle \sigma(x, \langle r \rangle) \ll 1$$

might reach 0.3-0.5 @LHC

Most "dangerous" is the

2-nucleon correction

$$rac{d\sigma^{(2N)}(pA o J/\psi X)}{dy} \sim \ \ \sim \langle
ho_A \left(b, \, z_1
ight)
ho_A \left(b, \, z_2
ight)$$

$$\times \Sigma_{g \to \{8^-\}} \Sigma_{\{8^-\} \to \{1^+\}}$$

$$\times \underbrace{S_A^{(2N)}(...)}_{\text{suppression}}$$

$$r_{1,2}, \alpha_{1,2}, z_1 < z_2, b$$

$$\begin{split} & \Sigma_{\mathbf{g} \to \{\mathbf{8}^-\}} \approx \frac{5}{8} \left[\sigma_{\tilde{\mathbf{c}}\mathbf{c}} \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) - \sigma_{\tilde{\mathbf{c}}\mathbf{c}} \left(\frac{\vec{r}_1 - \vec{r}_2}{2} \right) \right] \\ & \Sigma_{\mathbf{g} \to \{\mathbf{8}^-\}} \approx \frac{1}{8} \left[\sigma_{\tilde{\mathbf{c}}\mathbf{c}} \left(\frac{\vec{r}_1 + \vec{r}_2}{2} \right) - \sigma_{\tilde{\mathbf{c}}\mathbf{c}} \left(\frac{\vec{r}_1 - \vec{r}_2}{2} \right) \right] \end{split}$$

$$S_{\mathbf{A}}^{(2N)} = \exp\left(-\frac{\sigma_{3}\left(\vec{\mathbf{r}}_{1}\right) + \sigma_{3}\left(\vec{\mathbf{r}}_{2}\right)}{2} \int_{-\infty}^{z_{1}} d\zeta \, \rho_{\mathbf{A}}\left(b,\zeta\right)\right.$$
$$\left. - \frac{\Sigma_{(8^{-})}\left(\vec{\mathbf{r}}_{1},\vec{\mathbf{r}}_{2}\right)}{2} \int_{z_{1}}^{z_{2}} d\zeta \, \rho_{\mathbf{A}}\left(b,\zeta\right)\right.$$
$$\left. - \frac{\sigma_{c\bar{c}}\left(r_{1}\right) + \sigma_{c\bar{c}}\left(r_{2}\right)}{2} \int_{z_{2}}^{\infty} d\zeta \, \rho_{\mathbf{A}}\left(b,\zeta\right)\right.$$

- ullet $\Sigma_{g o\{8^-\}},$ $\Sigma_{\{8^-\} o\{1^+\}}$ grow with energy $\sim\sigma_{car{c}}$
- $S_A^{(2N)}$ (...) decreases

$$R_{pA}^{(2N)} \sim rac{d\sigma^{(2N)}}{d\sigma^{(pp)}}$$

mildly grows with energy

J/ψ in pA: suppression vs. enhancement

How large are different contributions?

- Absorption (dotted) determines energy dependence of R_{pA} , 2N-term: 20-40% contribution
- ullet Inclusion of gluon shadowing (dashed) slightly decreases R_{pA} at forward rapidities
- Inclusion of soft multiple pomerons/energy loss (solid) decreases cross-section at RHIC, almost no effect at LHC

J/ψ in pA: theory vs experiment

Rapidity dependence

ALICE: JHEP 1402, 073

p_T -dependence

(Experimental points: ALICE, JHEP 1506 (2015), 055)

- Reasonable agreement with experiment in a wide kinematic range
- ullet $R_{\it pA}\sim 1$ due to partial compensation of absorption and 2-nucleon term

Other quarkonia in pA: theory vs experiment

$\Psi(2S)$ suppression

ALICE: JHEP 1412, 073

$\Upsilon(1S),\Upsilon(2S)$ suppression

- Reasonable agreement with experiment in a wide kinematic range
- 25 suppression due to node in meson WF
- No free parameters

Suppression of quarkonia in AA: theory vs experiment

- Attenuation inside the cold nuclear phase is stronger than for *pA* due to higher nuclear densities
- Inside hot phase (QGP), there are two complementary mechanisms: "melting" (modification of potential $V_{c\bar{c}}(r, T)$) and absorption

$$\operatorname{Im} V \sim -\frac{v_{\psi} \; \hat{q}(...) \, r^2}{4}$$

- ullet Equations of state of QGP: $\hat{q} \Rightarrow$ "local temperature" T for melting
- We do not consider the so-called coalescence contributions, when $\bar{c}c$ start recombine in the QGP phase.
- Reasonable agreement
- Transport coefficient $\hat{q}_0=2\pm 1\,{\rm GeV}^2/{\rm fm}$ is the main source of uncertainty.

Summary

pA collisions

- ullet We found that two-nucleon mechanism gives a sizeable contribution both at RHIC and LHC and explains why $R_{pA}\sim 1$ despite of the fact that mere absorption is sizeable.
- We described suppression of J/ψ , $\psi(2S)$, $\Upsilon(1S)$, and $\Upsilon(2S)$ in pA collisions in the dipole framework.

AA collisions

 \bullet For AA, we found reasonable agreement with ALICE data on p_T -dependence