Suppression of charmonia in pA and AA collisions

M. Siddikov

(in collaboration with B. Kopeliovich, Ivan Schmidt)

Partially based on:

PRC 95 (2017) 065203

PRC 91 (2015), 024911

NPA 931 (2014), 601
J/ψ in pp collisions

Color Singlet Model (1980’s)

Collinear factorization:
- Reasonable for p_T-integrated observables
- Incorrect $1/p_T$ behaviour for $p_T \gg m_{J/ψ}$

Large-p_T description

- Phenomenological approaches (Color Octet, NRQCD)
- k_T-factorization instead of collinear

Co-production ($J/ψ + \bar{Q}Q$, ...)

(PRL 101 (2008) 152001)

Quark and gluon fragmentation
(S. Baranov, B. Kopeliovich, 2017 in preparation)

Multigluon contributions
(EPJC 75 (2015), 213)

Sizeable contribution from other mechanisms

Collinear factorization
Nuclear effects for J/ψ in pA collisions

Data & experiment for J/ψ

- Heavy quark limit: should vanish
- R_{pA} increases when $x \to 1$ due to energy loss
- Compatible with E866, PHENIX and ALICE data

$\psi(2S)$ suppression

- Why $\psi(2S)$ is more suppressed than J/ψ?

(Major challenge for many approaches which describe J/ψ, Υ suppression).
J/ψ in dipole approach

Same diagrams as in k_T factorization, we just express everything in terms of dipole framework.

Large-m_Q limit

- Dipole cross-section related to k_\perp uPDF, e.g. for color singlet

$$
\sigma_d(x, r_\perp) = \int \frac{d^2 k_\perp}{(2\pi)^2} F(x, k_\perp) \left(1 - e^{i k_\perp \cdot r_\perp}\right).
$$

- Color octet dipole cross-section could be expressed as linear combinations of color singlets

- Major advantage: more convenient for description of nuclear absorption.

Reasonable description of pp data

Same diagrams as in k_T factorization, we just express everything in terms of dipole framework.
J/ψ production cross-section in the dipole approach

$$
\frac{d\sigma_{pp}}{dy} = \frac{9}{8} g \left(x_1(y) \right) \int d\alpha G d\alpha_1 d^2 r_1 \ d\alpha_2 d^2 r_2 \ d^2 \rho \ \Psi^*_M (\alpha_1 r_1) \Psi_M (\alpha_2 r_2) \times

\times \sum_{n, n' = 1}^6 \eta_n \eta_{n'} \ \text{Tr} \left[\Lambda_M \Phi_{g \rightarrow \bar{Q} Q} \left(\epsilon_n, \bar{r}_n \right) \Phi_{Q \rightarrow Q g} \left(\delta_n, \bar{\rho}_n \right) \right]

\times \text{Tr} \left[\Lambda_M \Phi_{g \rightarrow \bar{Q} Q} \left(\epsilon_{n'}, \bar{r}_{n'} \right) \Phi_{Q \rightarrow Q g} \left(\delta_{n'}, \bar{\rho}_{n'} \right) \right]^*

\times \sigma \left(x_2, \bar{r}_n - \bar{r}_{n'} \right)

\text{Meson WFs}

\bullet \ \Lambda_M$-spin projector on meson WF
\bullet \ \Phi_{g \rightarrow \bar{Q} Q}, \Phi_{Q \rightarrow Q g} \ are \ evaluated \ perturbatively \ (m_c \rightarrow \infty \ \text{limit})
\bullet \ \bar{r}_{n(1,2)} \approx \bar{r}_{1,2} + \delta\bar{r}_n (\alpha, \alpha_G, r, \rho), \ \ \ \bar{\rho}_n \approx \bar{\rho} + \delta\bar{\rho}_n (\alpha, \alpha_G, r, \rho)
\bullet \ \text{Sum over 6 diagrams in amplitude and its conjugate is implied}

\bullet \ \text{For } p_T\text{-dependent cross-section, additional Fourier over difference of dipole impact parameter } \Delta \vec{b} = \vec{b}_1 - \vec{b}_2 \neq 0; \ \text{terms } \delta\bar{r}_n, \delta\bar{\rho}_n \ also \ depend \ on \ \vec{b}_{1,2}
Absorptive corrections

- Reduction of g flux before J/ψ production

$$\sim \exp \left(-\frac{\sigma_4(x, \vec{r}_1, \vec{r}_2, \vec{\rho})}{2} \int_{z}^{+\infty} \rho_A(b, \zeta) d\zeta \right)$$

\vec{r}_1, \vec{r}_2 is the dipole size, $\vec{\rho}$ is the transverse coord. of emitted gluon

- Attenuation of produced $\bar{Q}Q$ dipoles,

$$\sim \exp \left(-\frac{\sigma_{\bar{c}c}(x, r)}{2} \int_{z}^{+\infty} \rho_A(b) d\zeta \right)$$

Gluon shadowing

- Gluon fluctuation $g \rightarrow \bar{c}c$ is the dominant Fock state, yet there are contributions $\bar{c}cg, \bar{c}cgg, ...$

- Higher Fock states have shorter coherence time due to heavier mass

$$\Delta M_{ccg} \sim \frac{k_{g \perp}^2}{x_g}$$

- Attenuation of gluon densities & dipole cross-sections,

$$\sigma_d \rightarrow R_g(x_2) \sigma_d$$

Inelastic multiple pomeron exchanges

(see PRC 72, 054606 for more details)

- Due to differences in nuclear suppression of higher Fock states of proton

- Formally factorization breaking terms

- Similar to energy loss correction, suppresses gluon PDFs for $x_F \rightarrow 1$

All the mentioned corrections suppress R_{pA} with increase of energy
J/ψ production in pA

2-nucleon contribution

- Opacity expansion:
 \[
 \langle T_A(b) \rangle \sigma(x, \langle r \rangle) \ll 1
 \]

 might reach 0.3-0.5 @LHC

- Most “dangerous” is the 2-nucleon correction

\[\text{c̅c} \]

\[
\begin{array}{c}
\text{N} \quad \text{r} \\
\text{g} \quad \text{g}
\end{array}
\]

\[
\text{X} \quad \text{X}
\]

same order in \(\sim O(\alpha_s(m_c)) \)

\[
\frac{d\sigma^{(2N)}(pA \rightarrow J/ψX)}{dy} \sim \langle \rho_A(b, z_1) \rho_A(b, z_2) \rangle
\]

\[
\times \sum_{g \rightarrow \{8-\}} \sum_{\{8-\} \rightarrow \{1+\}} \sum_{S_A^{(2N)}(\cdots)} \text{suppression}
\]

\[
R_{pA}^{(2N)} \sim \frac{d\sigma^{(2N)}}{d\sigma(pp)}
\]

mildly grows with energy

\[
\sum_{g \rightarrow \{8-\}} \approx \frac{5}{8} \left[\sigma_{\bar{c}c} \left(\frac{r_1 + r_2}{2} \right) - \sigma_{\bar{c}c} \left(\frac{r_1 - r_2}{2} \right) \right]
\]

\[
\sum_{g \rightarrow \{8-\}} \approx \frac{1}{8} \left[\sigma_{\bar{c}c} \left(\frac{r_1 + r_2}{2} \right) - \sigma_{\bar{c}c} \left(\frac{r_1 - r_2}{2} \right) \right]
\]

\[
S_A^{(2N)} = \exp \left(-\frac{\sigma_3(r_1) + \sigma_3(r_2)}{2} \int_{z_1}^{z_2} d\zeta \rho_A(b, \zeta) \right)
\]

\[
- \frac{\sum_{\{8-\}}(r_1, r_2)}{2} \int_{z_1}^{z_2} d\zeta \rho_A(b, \zeta)
\]

\[
- \frac{\sigma_{\bar{c}c}(r_1) + \sigma_{\bar{c}c}(r_2)}{2} \int_{z_2}^{\infty} d\zeta \rho_A(b, \zeta)
\]
Absorption (dotted) determines energy dependence of R_{pA}, $2N$-term: 20-40% contribution

- Inclusion of gluon shadowing (dashed) slightly decreases R_{pA} at forward rapidities

- Inclusion of soft multiple pomerons/energy loss (solid) decreases cross-section at RHIC, almost no effect at LHC
\(J/\psi \) in \(pA \): theory vs experiment

Rapidity dependence

PHENIX: PRL 107, 142301

![Graph showing Rapidity dependence for PHENIX data.]

ALICE: JHEP 1402, 073

![Graph showing Rapidity dependence for ALICE data.]

- Reasonable agreement with experiment in a wide kinematic range
- \(R_{pA} \sim 1 \) due to partial compensation of absorption and 2-nucleon term

\(p_T \)-dependence

(Experimental points: ALICE, JHEP 1506 (2015), 055)

![Graph showing \(p_T \)-dependence for PHENIX data.]

![Graph showing \(p_T \)-dependence for ALICE data.]

\(p_T \) dependence

\(R(1N) + R(2N) \)

\(R(1N) \)

\(R(2N) \)
Other quarkonia in pA: theory vs experiment

ψ(2S) suppression

PHENIX: PRL 111, 202301

- Reasonable agreement with experiment in a wide kinematic range
- 2S suppression due to node in meson WF
- No free parameters

ALICE: JHEP 1412, 073

Τ(1S), Τ(2S) suppression

PHENIX: PRC 87, 044909

- Reasonable agreement with experiment in a wide kinematic range
- 2S suppression due to node in meson WF
- No free parameters

(dipole energy in nucleus rest frame)
Suppression of quarkonia in AA: theory vs experiment

- Attenuation inside the cold nuclear phase is stronger than for pA due to higher nuclear densities.
- Inside hot phase (QGP), there are two complementary mechanisms: “melting” (modification of potential $V_{c\bar{c}}(r, T)$) and absorption:
 \[\text{Im} V \sim - \frac{\nu_\psi \hat{q}(\ldots) r^2}{4} \]
- Equations of state of QGP: $\hat{q} \Rightarrow$”local temperature” T for melting.
- We do not consider the so-called coalescence contributions, when $\bar{c}c$ start recombine in the QGP phase.

- Reasonable agreement
- Transport coefficient $\hat{q}_0 = 2 \pm 1$ GeV2/fm is the main source of uncertainty.
Summary

pA collisions
- We found that two-nucleon mechanism gives a sizeable contribution both at RHIC and LHC and explains why $R_{pA} \sim 1$ despite of the fact that mere absorption is sizeable.
- We described suppression of J/ψ, $\psi(2S)$, $\Upsilon(1S)$, and $\Upsilon(2S)$ in pA collisions in the dipole framework.

AA collisions
- For AA, we found reasonable agreement with ALICE data on p_T-dependence