

The electromagnetic response of resonance matter and other strange observations

Tetyana Galatyuk for the HADES Collaboration

Technische Universität Darmstadt / GSI Helmholtzzentrum für Schwerionenforschung

Baryonic matter at few GeV beam energy

- Au+Au $\sqrt{s_{NN}} = 2.42 \text{ GeV}$
- Long interpenetration times

- Baryon-dominated system throughout the evolution (N_π/A_{part} ≈ 10%)
- Comparatively long lifetime of the dense "fireball"

Central cell (3x3x3 fm3) thermodynamic properties from coarse graining UrQMD

HADES explores baryon-rich matter with rare and penetrating probes

■ Emissivity of matter (dileptons)

Vector meson spectral functions modified by coupling to baryons Play substantial role in ρ melting observed in UrHIC cf. R. Rapp, H. van Hees, PLB 753 (2016) 586

- □ Flavor production (strangeness)
 Strong kinematic suppression of direct K⁻ production
 K⁻ couples strongly to baryons
- $NN \rightarrow N\Lambda K^{+}$ $E_{thr} = 1.58 \text{ GeV}$ $NN \rightarrow NNK^{+}K^{-}$ $E_{thr} = 2.49 \text{ GeV}$ $NN \rightarrow NN\phi$ $E_{thr} = 2.59 \text{ GeV}$

- Flow anisotropies

 Preferred out-of-plane emission due to shadowing
- Net baryon number fluctuations
 No antiprotons, additional terms when correcting for volume fluctuations

HigheAccate tance DiElectron Spectrometer at GSI, Darmstadt

HADES program:

- Excitation function for low-mass lepton pairs and (multi-)strange baryons and mesons
- □ Various aspects of baryon-resonance physics

- Large acceptance: full azimuthal coverage, 18°-85° polar angle
- Interaction rate capability: up to 50kHz trigger rate
- \square Mass resolution 2 % (ρ/ω region)

HADES event reconstruction (2.5×109 events)

Final state "Hadron-chemistry"

Strange particle production

- First comprehensive data set on strange particle productions from the Au+Au at $\sqrt{s_{NN}}$ = 2.42 GeV
- □ Far below (free NN) threshold→ strong constraints on production mechanism
- Universal scaling with participant number A^{α}_{part} , (Mult $\sim A^{\alpha}_{part}$, with $\alpha > 1$)
- Production yields reflect matter properties

Macroscopic description of hadron production

- \Box Grand canonical ensemble (T, μ_B , V)
- Strangeness canonically suppressed at low temperatures → needs additional parameter: R_c < R_V

 \blacksquare Hadron abundances described by four parameters T, $\mu_{B_{s}}$ R_V, R_c

- ☐ What is the mechanism responsible for system thermalization?
- \square ''Matter'' formed also at low energies (high $\mu_{\rm B}$),

THERMUS v2.3 S. Wheaton, J. Cleymans Comput.Phys.Commun. (2009) 180

The role of ϕ meson: do K⁺, K⁻ freeze-out sequentially?

HADES: arXiv:1703.08418v1 [nucl-ex]

Sizeable increase of φ meson to K-ratio around production threshold 25% of K-are from φ decays

- Sufficient statistics to perform
 multi-differential analysis for K⁺, K⁻ and φ
 - Unique freeze-out criteria when φ decay kinematics is taken into account → no evidence for sequential freeze-out of K⁺, K → support for statistical model

See also Ar+KCl in HADES: PRC 86 (2010) Al+Al in FOPI: EPJA 52 (2016)

$[(MeV/c^2)^{-3}]$ **PRELIMINARY** 1 x10⁵ dm_tdy φ **x10**⁷ $\frac{1}{m_t}$ $K_S^0 x4.10^2$ $K^{+} \times 10^{2}$ 10^{-8} 10^{-9} Fat points included in fit m_t - m_o [MeV/c²]

Flow and its anisotropies

STAR arXiv:1701.07065, 2016

- Kinetic freeze-out parameters from blast wave fit to hadron spectra
- $T_{kin} = 62 \pm 10 \text{ MeV}, <\beta_r > = 0.36 \pm 0.04$
- lacktriangle Λ and ϕ fall out of the trend

- ☐ Global freeze-out parameters fit well into trend of world data
- \Box $T_{kin} < T_{chem}$ also at low energies (high μ_B)

(Net)-Proton Number Fluctuations

The experimental challenge ...

- ☐ Phase space region, not to large not to small
- □ Data need efficiency corrections! Note that efficiency = acc × det.eff. × rec.eff.
 - → Two methods tested and validated with full MC simulations and realistic detector response
- □ Volume fluctuations due to centrality selection, no antiprotons, no terms cancel!

Proton m, spectra

Proton multiplicity distributions

Analysis based on 40×10⁶ Au+Au evts divided into 4 centrality classes

(Net)-Proton Number Fluctuations

Need to select a phase-space bite small enough to avoid spectators, but large enough to stay away from Poisson limit! $\rightarrow \Delta y=0.2$

How about bound protons? d/p = 0.3 - 0.4 \rightarrow deuteron fluctuation analysis is ongoing

red/black = unfolding (preferred method) + vol. flucs. corr.

green = evt-by-evt eff correction of factorial moments + vol. flucs. corr.

Electromagnetic radiation

- No strong final state interactions
 - → leave reaction volume undisturbed
 - Encodes information $\overline{ ext{on collisions }(\mathsf{T}, \mu_\mathsf{B}, au_\mathsf{coll})}$

The vector correlator is directly accessible in HIC:

$$\frac{dN_{II}}{d^4xd^4q} = \frac{-\alpha_{EM}^2}{\pi^3M^2} f^B(q_0;T) \operatorname{Im}\Pi_{EM}^{\mu\nu}(M,q;\mu_B,T)$$

→ Unique direct access to in-medium spectral function

Virtual photon emission

Two independent analyses (red, black)

- □ First measurement of e⁺e⁻ for a heavy system in this energy regime
- Normalization to number of neutral pions

□ Strong excess yield (0.15<M<0.7 GeV/c²) above e⁺e⁻ cocktail components of meson decays at freeze-out and elementary baryonic reference observed

→ Medium radiation

HADES., collaboration review

Virtual photon emission – isolation of excess

- Isolation of excess radiation by subtracting experimentally measured contributions from first chance (NN reference) and late emission (η)
- Acceptance corrected excess yield
- □ M_{ee} < I GeVc² ~ exponential fall-off 'Planck-like'
- → measurement of radiating source temperature

Virtual photon emission – fireball thermometer

- Isolation of excess radiation by subtracting experimentally measured contributions from first chance (NN reference) and late emission (η)
- □ Acceptance corrected excess yield
- □ M_{ee} < I GeVc² ~ exponential fall-off 'Planck-like'
- → measurement of radiating source temperature

- $\Rightarrow \text{ fit } \frac{dN}{dM} \sim M^{\frac{3}{2}} \times \exp\left(-\frac{M}{T}\right) \text{ to range M=0.1-0.8 GeV}$
- \Box <7>_{emitting source} = 72 ± 2 MeV/k_B

Virtual photon emission - fireball chronometer

- $lue{}$ Strong excess (${\sim}$ A $_{
 m part}$ $^{1.3}$, interplay V \otimes $au_{
 m coll}$)
- Rapid increase of relative yield reflects the number of Δ 's/ N*'s regenerated in fireball
- Dilepton chronometer of the collision time

What is the nature of the excess?

- → Regeneration of baryonic resonances
- → Subsumed into spectral functions

HADES., collaboration review

Thermal dileptons at SIS18?

HADES., collaboration review

CG FRA: Phys. Rev. C 92, 014911 (2015) CG GSI-Texas A&M: Eur.Phys.J. A52 (2016) no.5, 131

- $lue{}$ Strong broadening of the in-medium ho
- Thermal rates folded over coarse-grained UrQMD medium evolution works at low energies
- Supports baryon-driven medium effects at UrHIC (SPS and RHIC)!

Résumé ...

- First measurement of acceptance corrected excess spectrum at low energies \rightarrow robust understanding of low-mass dilepton excess radiation by ρ -baryon coupling.
- Analyzed proton nb fluctuations \rightarrow HADES data allow to extend RHIC results towards low $\sqrt{S_{NN}}$, but interpretation needs input from theory.
- \Box Unexpectedly high ϕ multiplicities. Feed down correction important when interpreting kaon spectra.
- □ Strange hadrons → Universal scaling with participant number A_{part}
- $lue{}$ Completion of the excitation functions of flow, T_{chem} , T_{kin} and $<\beta_T>$

- \square Exciting results from Au+Au collisions at $\sqrt{S_{NN}}$ =2.42 GeV
 - → suggest "thermalize" strongly interacting medium created

... and prospects

- Strong scientific program for FAIR Phase-0
- Important measurements to complement the exploration
 of the phase diagram and to provide a valuable reference measurements
 - \square π +p/A \sqrt{s} =1.7 1.9 GeV: EM structure of baryonic resonances
 - ☐ Ag+Ag at I.65A GeV: multi-strange hadrons & intermediate-mass dileptons

Submitted to PAC on June 19, 2017

Continue physics program at higher energies SIS100

The HADES Collaboration

- → IOP SAS, Bratislava, Slovakia
 - → INR & ITEP & MEPHI, Moscow, Russia
 - LIP & ISEC, Coimbra, Portugal
 - → SIP JUC Cracow, Poland
 - → GSI, Damstadt, Germany
 - → TU Darmstadt, Germany
 - → HZDR, Dresden, Germany
 - → JINR Dubna, Russia
 - → GU Frankfurt, Germany
 - → JLU Giessen, Germany
 - → TU München, Germany
 - → Lisboa, Portugal
 - → Nicosia, Cyprus
 - → IPN Orsay, France
 - → NPI CAS, Rez, Czech Rep.
 - → USC S. de Compostela, Spain
 - → FZ Jülich, Germany (James Ritman)
- → U Wuppertal, Germany (Karl-Heinz Kampert)

Thank you for your attention!

