Prospects for the study of heavy-ion collisions at the NICA collider @ JINR

Vadim Kolesnikov (JINR)

On behalf of NICA-MPD

The European Physical Society Conference on High Energy Physics Venice, Italy, July 5-12, 2017

Research programs @ NICA

NICA : Structure and Operation Regimes

NICA infrastructure development

- + Civil Construction
- + Service systems: water cooling, cryogenics, electric power, etc.

NICA elements. Construction status

(in operation since 2015)

Electron cooling system for the Booster (assembled, under tuning)

SC Magnets for the NICA Booster, Collider & SIS-100/FAIR (workshop at VBLHEP JINR)

Working plans:

40 dipoles + 48 quadrupoles for the Booster
80 dipoles + 86 quadrupoles for the Collider
175 quadrupoles for SIS100 (FAIR)

We plan to have 75% magnets at the end of 2017

NICA booster: 33% of dipoles and 10% of doublets passed all the tests

UrQMD, Au+Au, 4 AGeV

Detectors at NICA: Baryonic Matter at Nuclotron (BM@N)

- Ideally suited for exploration of reaction mechanism & in-medium properties
- Energy range of limited experimental information
- Expectation of rich structure of the QCD phase diagram @ high densities 3 400

<u>Phys</u> ulk properties

Physics cases:

- Bulk properties, EOS
- In-medium meson-nucleon potential at high ρ_{B}
- Sub-threshold production of strange hadrons in A+A
- Measurement of elementary reactions

BM@N status and data taking plans

DCH

ZDC

TOF-700

8

year	2016	2017 FebMar.	2017 2019 NovDec.		2020 +	
beam	d ()	C, Ar	C, Ar Kr Au		Au, p	
maximum intensity, Hz	1M	1M 1M		1M	10M	
trig. rate, Hz	10k	10k	20k	20k 20k		
central tracker	6 GEM half pl.	8 GEM half pl.	10 GEM 8 GEM half pl. full pl.		12 GEM or 8+2Si	
expiment status	techn. run	techn. run	commis.& physics run	physics stage 1	physics stage 2	

MPD at NICA: design and tasks

Experimental strategy: measure a large variety of signals systematically changing collision parameters (energy, centrality, system size). Reference data (i.e. p+p) will be taken in the same experimental conditions.

Bulk properties, EOS particle yields & spectra, ratios, femtoscopy, flow measure: γ, π, Κ, ρ, Λ, Ω, (anti)particles, light nuclei

In-Medium modification of hadron properties onset of low-mass dilepton enhancement <u>measure:</u> ρ , ω , $\phi \rightarrow e+e-$

Deconfinement (chiral) phase transition at high ρ_B enhanced strangeness production Chiral Magnetic (Votical) effect, A polarization

QCD Critical Point event-by-event fluctuations and

Strangeness in nuclear matter

Magnet : 0.5 T superconductor Tracking : TPC, ECT, IT ParticleID : TOF, ECAL, TPC T0, Triggering : FFD Centrality, Event plane : FHCAL

Particle yields in Au+Au collisions @ $\sqrt{s_{NN}} = 8$ GeV (central collisions)

Expectations for 10 weeks of NICA running	L at L = 10 ²⁷ cm ⁻² s ⁻¹	(duty factor = 0.5)
---	--	---------------------

Particle	Multiplicity	Decay mode	BR	*Efficiency %	Yield/10 w	
π^+	293			61	2.6 . 10 ¹¹	
K +	59			50	4.3 . 10 ¹⁰	
р	140			60	1.2 . 10 ¹¹	
ρ	31	e+e-	4.7 · 10 ⁻⁵	35	7.3 . 10 ⁵	
ω	20	e+e-	7.1 · 10 ⁻⁵	35	7.2 .10 ⁵	
φ	2.6	e+e-	3 · 10 ⁻⁴	15	1.7 . 10 ⁵	
Ω	0.14	ΛК	0.68	2	2.7 .10 ⁶	
D ⁰	2 · 10 ⁻³	Κ ⁺ π ⁻	0.038	20	2.2 .10 ⁴	
J/ψ	8.10 -5	e+e-	0.06	15	10 ³	

*Efficiency includes the MPD acceptance, realistic tracking and particle ID. Particle Yields from experimental data (NA49), statistical and HSD models. Efficiency estimates based on MPD simulations

MPD magnet: construction status

Aluminum support cylinder blanks for SC coil during transportation

Clean room (S=84 m² ISO-6)

MPD tracker - TPC

1.5

³He

2

p/Z (GeV/c)

Dimentions: 4 m x 3m Drift Length: 170cm Gas: 90% Argon + 10% Methane Readout: 2x12 sectors (MWPC or GEM) Rate capability up to 7 kHz Spatial resolution: σ_{r_0} ~300 µm, σ_z ~ 2 mm **Momentum resolution**: $\Delta p/p < 3\%$ dE/dx resolution: < 8%

0.5

0

'n

8

 $\Delta p_{_{\rm T}}^{}\,/\,p_{_{\rm T}}^{},$

dE/dx (keV/cm)

10⁻⁶

MPD mRPC TOF: preparation to mass-production

- **Personnel training**

basic elements - NINO & HPTDC chips have been purchased sufficient to produce read-out electronics for the TOF + reserve (~24000 channels).

MPD Calorimetry: ECAL and FHCAL

NICA schedule

	2015	2016	2017	2018	2019	2020	2021	2022	2023
Injection complex									
Lu-20 upgrade									
HI Source									
HI Linac									
Nuclotron									
general development									
extracted channels									
Booster									
Collider									
startup configuration									
design configuration									
BM@N									
l stage									
ll stage									
MPD									
solenoid									
TPC, TOF, Ecal (barrel)									
Upgrade: end-caps +ITS									
Civil engineering									
MPD Hall SPD Hall									
collider tunnel HEBT Nuclotron-collider									
Cryogenic									
for Booster									
for Collider									

running time

Summary

- Construction of the NICA complex is well in progress (civil construction, accelerator components, service systems)
- Substantial progress in the construction of the detectors:
 - BM&N experiment commissioning runs started
 - MPD design has optimized for Day'1 physics, preparation for mass-production ongoing

Thank you for your attention!

SPARES

MPD after 2023: EndCap and InnerTrackers

- A new technology developed to build straw detectors as multi-wheel structures
- ECT full size prototype: max. deviation ∆R < 300 mm for a R=1.1 m wheel

2x60 straw layers1.3<|η|<2.2 72000 straw tubes 4 mm x 60 cm

- 4 cylindrical layers $|\eta|$ < 2.5
- 300 μm double-sided microstrip 100 μm pitch
- Thickness/layer ~ 0.8% X₀
- Resolution: $\sigma_z = 120 \ \mu m$, $\sigma_{rf} = 23 \ \mu m$

