Measurements of multi-jet production in ultra-peripheral lead-lead collisions with the ATLAS detector

Prof. Brian Cole
Columbia University
for the ATLAS collaboration
Nuclear parton distributions

• Recent CTEQ analysis of nuclear PDFs with comparisons to other fits
 ⇒ Large uncertainties, especially at low x
• New data needed to reduce uncertainties
 – Theoretical proposal by Strikman et al in 2005:
 ⇒ measure dijet photo-production in ultra-peripheral nuclear collisions
 ⇒ Until recently, not realized by any experiment
Photo-nuclear processes

- **Two processes:**
 - Left: “direct” - photon enters hard scattering
 - Right: “resolved” - photon virtually splits into partons/hadron, which scatters

- Use Zero Degree Calorimeters (ZDCs) to select Pb+Pb 0nXn events
- +gap requirements to select photo-production
Gap analysis

- Require gap on photon side: $\Sigma_\gamma \Delta \eta > 2$
- Reject large gaps on nuclear side: $\Sigma_A \Delta \eta < 3$
Event Topology: Gaps vs Multiplicity

• Left: $\Sigma \gamma \Delta \eta$ vs N_{trk} for 0nXn

• Right: N_{trk} distributions for events with ($\Sigma \gamma \Delta \eta > 2$) and without ($\Sigma \gamma \Delta \eta < 1$) gaps.

⇒ clear difference between photo-nuclear and hadronic collision events
The measurement: jets and kinematics

- Jets reconstructed using anti-\(k_t\) algorithm w/ \(R = 0.4\)
 - EM+JES calibration + flavor correction
- Measure differential cross-sections vs \(H_T\), \(x_A\), \(z_\gamma\)

\[
\begin{align*}
 m_{\text{jets}} &\equiv \left(\sum E_i - \left| \sum \vec{p}_i \right| \right)^{1/2} \\
 y_{\text{jets}} &\equiv \pm \frac{1}{2} \ln \left| \frac{\sum E_i + \sum p_{z_i}}{\sum E_i - \sum p_{z_i}} \right| \\
 H_T &\equiv \sum p_{T_i} \\
 x_A &\equiv \frac{m_{\text{jets}}}{\sqrt{s}} e^{-y_{\text{jets}}} \\
 z_\gamma &\equiv \frac{m_{\text{jets}}}{\sqrt{s}} e^{+y_{\text{jets}}}
\end{align*}
\]

- \(p_z\), \(z_\gamma\), \(y\) defined to be positive in photon direction
The measurement: jets and kinematics

• Jets reconstructed using anti-\(k_t\) algorithm w/ \(R = 0.4\)
 – EM+JES calibration + flavor correction

• Measure differential cross-sections vs \(H_T, x_A, z_\gamma\)

\[
m_{\text{jets}} \equiv \left(\sum E_i - \left| \sum \vec{p}_i \right| \right)^{1/2}
\]

\[
y_{\text{jets}} \equiv \pm \frac{1}{2} \ln \left| \frac{\sum E_i + \sum p_{zi}}{\sum E_i - \sum p_{zi}} \right|
\]

\[
H_T \equiv \sum p_{T_i}
\]

\[
x_A = \frac{m_{\text{jets}}}{\sqrt{s}} e^{-y_{\text{jets}}}
\]

\[
z_\gamma = \frac{m_{\text{jets}}}{\sqrt{s}} e^{+y_{\text{jets}}}
\]

– \(p_z, z_\gamma, y\) defined to be positive in photon direction

• For 2\(\rightarrow\)2 processes:
 – \(x_A\rightarrow x\) of struck parton in nucleus, \(z_\gamma \rightarrow x_\gamma y_\gamma\), \(H_T \rightarrow 2Q\)
The measurement: jets and kinematics

- Jets reconstructed using anti-k_t algorithm w/ $R = 0.4$
 - EM+JES calibration + flavor correction

- Measure differential cross-sections vs H_T, x_A, z_γ

\[
m_{\text{jets}} \equiv \left(\sum E_i - \left| \sum \mathbf{p}_i \right| \right)^{1/2}
\]
\[
y_{\text{jets}} \equiv \pm \frac{1}{2} \ln \left| \frac{\sum E_i + \sum p_{zi}}{\sum E_i - \sum p_{zi}} \right|
\]
\[
H_T \equiv \sum p_{T_i}
\]
\[
x_A = \frac{m_{\text{jets}}}{\sqrt{s}} e^{-y_{\text{jets}}}
\]
\[
z_\gamma = \frac{m_{\text{jets}}}{\sqrt{s}} e^{+y_{\text{jets}}}
\]

- p_z, z_γ, y defined to be positive in photon direction

- For $2 \rightarrow 2$ processes:
 - $x_A \rightarrow x$ of struck parton in nucleus, $z_\gamma \rightarrow x_\gamma y_\gamma$, $H_T \rightarrow 2Q$

- Fiducial acceptance:
 - $p_T^{\text{lead}} > 20$ GeV, $p_T^{\text{sub-lead}} > 15$ GeV
 - $|\eta_{\text{jet}}| < 4.4$, $H_T > 40$ GeV
The measurement: jets and kinematics

• Jets reconstructed using anti-k_t algorithm w/ $R = 0.4$
 – EM+JES calibration + flavor correction

• Measure differential cross-sections vs H_T, x_A, z_γ

\[
m_{\text{jets}} \equiv \left(\sum E_i - \left| \sum \vec{p}_i \right| \right)^{1/2}
\]
\[
y_{\text{jets}} \equiv \pm \frac{1}{2} \ln \left| \frac{\sum E_i + \sum p_{z_i}}{\sum E_i - \sum p_{z_i}} \right|
\]
\[
H_T \equiv \sum p_{T_i}
\]
\[
x_A = \frac{m_{\text{jets}}}{\sqrt{s}} e^{-y_{\text{jets}}}
\]
\[
z_\gamma = \frac{m_{\text{jets}}}{\sqrt{s}} e^{+y_{\text{jets}}}
\]

– p_z, z_γ, y defined to be positive in photon direction

• For $2 \rightarrow 2$ processes:
 – $x_A \rightarrow x$ of struck parton in nucleus, $z_\gamma \rightarrow x_\gamma y_\gamma$, $H_T \rightarrow 2Q$

• Fiducial acceptance:
 \[\Rightarrow p_{T_{\text{lead}}} > 20 \text{ GeV}, p_{T_{\text{sub-lead}}} > 15 \text{ GeV}\]
 \[\Rightarrow |\eta_{\text{jet}}| < 4.4, H_T > 40 \text{ GeV}\]

• No unfolding for jet response
Monte Carlo

Pythia 6 photo-production (gamma/mu+p)
 - re-weighted to match STARlight photon spectrum
 ⇒ Re-weighted MC agrees well (not perfectly) with data for all topology, kinematic distributions
 ⇒ Although ∃ conceptual issues w/ re-weighting
Acceptance in \((z_{\gamma}, x_A)\) strongly dependent on minimum jet system mass

- Determined by minimum \(p_T\) in analysis

\(\Rightarrow\) Easiest way to get to low \(x_A\) is large \(z_{\gamma}\)
Results: H_T Dependence

Differential cross-section in slices of x_A

- Not in systematic bands: overall normalization systematic of 6.2%
- Not exactly same as $F_2(x,Q^2)$
 - Still has $\sim 1/Q^4$ and z_γ dependence in cross section
 - Don’t expect to see scaling explicitly

ATLAS Preliminary

2015 Pb+Pb data, 0.38 nb$^{-1}$

$\sqrt{s_{NN}} = 5.02$ TeV, 0nXn

anti-k_t, $R=0.4$ jets

- $p_{lead}^{\text{jet}} > 20$ GeV
- $m_{jets}^{\text{lead}} > 35$ GeV

$0.0023 < x_A < 0.0049$

$0.0049 < x_A < 0.01 \times 10^{-2}$

$0.01 < x_A < 0.022 \times 10^{-4}$

$0.022 < x_A < 0.048 \times 10^{-6}$

$0.048 < x_A < 0.1 \times 10^{-8}$

$0.1 < x_A < 0.22 \times 10^{-10}$

$0.22 < x_A < 0.47 \times 10^{-12}$

Not unfolded for detector response

Data

Pythia+STARlight scaled to data

H_T [GeV]
Results: z_γ dependence

Differential cross-section in slices of H_T

Largest disagreement with model at small z_γ where re-weighted distribution most disagrees with data

Can extend to lower x_A by going to higher z_γ
Results: x_A Dependence

- Data agrees w/ MC over most of acceptance

\Rightarrow But limitations in MC sample (e.g. no $\gamma+n$, no nPDF)
• Presented a measurement of photo-nuclear jet production: ATLAS-CONF-2017-011
 – Qualitatively different than normal jet production in hadronic collisions
 – Expected features—rapidity gaps and neutron distributions—observed in the data
 – Good but not perfect MC-data agreement
 ⇒ Need MC with Pb+Pb EPA photon flux to avoid re-weighting which has conceptual difficulties
• Proof of principle that photo-nuclear dijet/multi-jet measurements possible in Pb+Pb collisions
 – Can access x_A, Q^2 (H_T) range not covered by existing fixed-target data.
 ⇒ kinematic coverage primarily constrained by minimum jet p_T, but also $\Sigma\gamma\Delta\eta > 2$ requirement
Measurement Coverage

1612.05741 [hep-ph]

Figure adapted from EPPS16

ATLAS Preliminary
2015 Pb+Pb data, 0.38 nb⁻¹
\(\sqrt{s}_{NN} = 5.02 \text{ TeV, } 0nXn \)

anti-\(k_T \), \(R = 0.4 \) jets
\(p_T^{\text{lead}} > 20 \text{ GeV, } m_{\text{jets}} > 35 \text{ GeV} \)
\(0.0001 < z_j < 0.05 \)

Not unfolded for detector response

\[\frac{d^2\tilde{\sigma}}{dH_T \, dx_A} \, [\mu \text{b GeV}^{-1}] \]

ATLAS-CONF-2017-011
Backup
Corrections and systematics

• Correct for inefficiency introduced by event selection requirements
 – ZDC inefficiency: can lose 0n1n contribution
 ⇒ On average: 0.98 ± 0.01
 – “EM pileup”: extra neutrons from EM dissociation
 ⇒ 5 ± 0.5% on overall normalization
 – Signal events removed by gap requirement
 ⇒ resulting inefficiency evaluated in MC sample
 ⇒ ~1% correction except at very large z_γ

• Luminosity: 6.1% uncertainty

• Jet response:
 – energy scale and resolution uncertainties
 ⇒ vary with H_T, x_A, z_γ
• Provides valuable estimate/constraint on potential $\gamma\gamma \rightarrow qq\bar{q}b$ backgrounds

– $qq\bar{q}b$ rate @ given, $M, y \sim$ dimuon

\Rightarrow After gap cuts, negligible background
Jet kinematics

Left:
- single jet p_T for leading, sub-leading, all other jets

Right:
- dijet $\Delta \phi$ distributions for 2, 3, >3 jet events
Triggers & Event selection

• The base trigger required:
 – ≥ 1 neutron in one ZDC, zero neutrons in the other
 ⇒ exclusive OR
 – Minimum total transverse energy, \(\Sigma E_T > 5 \text{ GeV} \)
 – Maximum total transverse energy, \(\Sigma E_T < 200 \text{ GeV} \)

• Two additional triggers were used that required jets with \(p_T > 25 \text{ GeV} \) (nominally).
 – Jet triggers sampled total luminosity of 0.38 \(\text{nb}^{-1} \)
 ⇒ Note: Pb+Pb hadronic cross-section is 7.7 \(\text{b} \).

• ZDC used to select 0nXn events (fiducial)
 ⇒ no correction for photon emitter breakup

• Additional gap requirements to suppress hadronic, diffractive, \(\gamma\gamma \rightarrow q\bar{q} \text{bar} \) backgrounds
Ultra-peripheral Pb+Pb collisions

- Ultra-relativistic nuclei source strong EM fields
- Photons coherently emitted by entire nucleus are enhanced by Z2
 \[k_\gamma \perp \sim \frac{\hbar c}{2RA} \sim 15 \text{ MeV}, \]
 \[k_\gamma z = \gamma \text{boost} \times k_\gamma \perp \sim 40 \text{ GeV} \]
 \[\Rightarrow \text{In AA collisions, energetic enough to stimulate hard scattering processes at low x in the target} \]
 \[\Rightarrow \text{Cross-section enhanced by Z2A} \sim 1.5 \times 10^6 \]
 compared to pp collisions at the same \(\sqrt{s} \)

- This measurement:
 \[\text{Photoproduction of di/multi-jets using 0.38 nb}^{-1} \text{ of} \]
 \[\sqrt{s_{NN}} = 5.02 \text{ TeV Pb+Pb data from 2015}. \]
Zero degree calorimeters (ZDCs)

- ATLAS ZDCs measure beam-rapidity neutrons emitted in Pb+Pb collisions
 - hadronic collisions in nucleus produce ≥ 1 neutron in target direction with probability ≈ 1
 - photon-emitting nucleus nominally emits 0 neutrons

⇒ However, additional soft photon exchanges cause neutron emission ~ 30% of the time.
ZDC selection

Beware suppressed contribution @ $E_{\gamma}^{ZDC} = 0$

• ZDC used to select 0nXn events (fiducial)
 ⇒ Observe some inefficiency in ZDC trigger rejection due to out-of-time pile-up

• + gap requirements to reject hadronic, photodiffractive, $\gamma\gamma \rightarrow qq\bar{q}$ backgrounds
Measurement Coverage

Figure adapted from EPPS16
1612.05741 [hep-ph]
Gap Distributions

• Left: comparison of traditional (edge) gap and photon-side sum ($\Sigma\gamma \Delta\eta$) gaps
 ⇒ off-diagonal events are mostly resolved photons

• Right: distribution of nucleus ($\Sigma_A \Delta\eta$) vs photon ($\Sigma\gamma \Delta\eta$) gap sums
Gap Distributions

- **Left:** comparison of traditional (edge) gap and photon-side sum ($\Sigma \gamma \Delta \eta$) gaps

 \Rightarrow off-diagonal events are mostly resolved photons

- **Right:** distribution of nucleus ($\Sigma A \Delta \eta$) vs photon ($\Sigma \gamma \Delta \eta$) gap sums

 - with selection cuts indicated.
Photo-nuclear Monte Carlo

- Pythia 6 used in “mu/gamma + p” mode to simulate photo-production @ 5.02 TeV
 - Contains mixture of direct and resolved processes
 ⇒ Does not have right photon flux
- “STARlight” model describes photon flux in ultra-peripheral nucleus-nucleus collisions
 - Used modified STARlight to calculate weights applied on per-event basis to Pythia sample:
Data-MC comparisons

- Good agreement for $\Sigma \gamma$ $\Delta \eta$ after re-weighting
 \Rightarrow Can trust MC-based corrections for event selection efficiency

- Also good agreement for y_{jets}
 \Rightarrow See backward shift because $z_{\gamma} < x_{A}$