Nuclear Dynamics probed in Electron-Ion Scattering at TeV Energies

Pasquale Di Nezza
(Laboratori Nazionali di Frascati)
High-energy nuclear collisions

Several open issues can be addressed and, may be, fixed at high density.

Due to the large partonic density per unit transverse area, effects are enhanced in nuclei:

- non-linear QCD dynamics (gluon recombination, multiple scattering, …)
- saturation: partonic densities from power-like to logarithmic
- breakdown of collinear factorization: dynamical generation of transverse momentum scale

Density effects and not different physical mechanisms

\[\frac{xG_A(x, Q_s^2)}{\pi R_A^2 Q_s^2} \sim 1 \implies Q_s^2 \propto A^{1/3} x^{-0.3} \]

LHC data show several similarities and a smooth transition between physics in pp, pPb and PbPb
Why ep/eA colliders

DIS offers a clean experimental environment:
• Lower multiplicity, no pileups, fully constrained kinematics
• More controlled theoretical setup: most of the existing computations in dilute-dilute and dilute-dense regime
• Stringent tests of collinear factorization: constraint on small-x nPDFs
• Transverse structure by diffraction events
• Essential input for heavy-ion programmes (initial conditions, hadronization)

nPDFs

Present
(EPPS16)

LHeC
FCC-eh

\begin{align*}
\text{nPDFs} & \quad Q^2 [\text{GeV}^2] \\
10^5 & \quad \text{fixed target DIS and DY} \\
10^4 & \quad \text{LHC dijets} \\
10^3 & \quad \text{LHC W & Z} \\
10^2 & \quad \text{CHORUS neutrino data} \\
10^1 & \quad \text{PHENIX } \pi^0 \\
10^0 & \quad \text{Present} \\
10^{-1} & \quad \text{LHeC} \\
10^{-2} & \quad \text{FCC-eh} \\
10^{-3} & \quad \text{RHIC} \\
10^{-4} & \quad \text{Present} \\
10^{-5} & \quad \text{DIS+DY} \\
10^{-6} & \quad \text{dAu@LHeC} \\
10^{-7} & \quad \text{dAu@FCC-eh} \\
10^{-8} & \quad \text{dAu@RHIC} \\
\end{align*}
nPDFs in heavy ion data

\[R = \frac{f_i / A}{A f_{i/p}} \approx \frac{\text{measured}}{\text{expected if no nuclear effects}} \]

- Large lack of data
- Large uncertainties for the nuclear PDFs → major limitation for extraction of QGP parameters
nPDFs at present

nCTEQ15 no neutrino data included, different functional form than EPPS16

The uncertainties are artificially smaller

Presently available LHC data don’t seem to have a large effect

Baseline includes EPS09 (fixed targets DIS, DY, RHIC)
EPPS16: baseline + Chorus data + LHC (dijet, W, Z) pPb
Large reduction of uncertainties

nPDFs in eA colliders

Large reduction of uncertainties, many improvements possible.
Small x and non-linear dynamics

Determining the dynamics at small x has been a major subject at HERA, RHIC and the LHC both in pp, pA and AA.

Smoking gun for breakdown of the collinear factorization

Several approaches have been developed to address small-x/high density dynamics.

Simultaneous description of different inclusive observables (with different sensitivities to the gluon and the sea) in DGLAP may show tensions e.g. F2 and FL.
Small x and non-linear dynamics

Determining the dynamics at small x has been a major subject at HERA, RHIC and the LHC both in pp, pA and AA

Smoking gun for breakdown of the collinear factorization

Diffractive events may be quite sensitive:

One would expect naively that suppression effects are larger when going from p to A in saturation than in collinear approaches

This is not generically so because the saturation due to the increase of density when going from p to A could be smaller for an already saturated proton input

both ep and eA are essential!!!
VM production

- Exclusive VM production \leftrightarrow DVCS provides a transverse scan of the partonic structure of the hadron
VM production

• Exclusive VM production \leftrightarrow DVCS provides a transverse scan of the partonic structure of the hadron

Coherent vs incoherent diffraction can solve the issue that the gluonic density of the proton in the transverse plane is distributed around the constituent quarks (hot spots) relevant for fluctuations, azimuthal asym, definition of MPIs...

$\gamma^+ + p \rightarrow J/\psi + p$

$\gamma^+ + p \rightarrow p + p$

$Q = 0, W_p = 1$ TeV

$|t| [\text{GeV}^2]$

$-t [\text{GeV}^2]$
Hard probes

Extremely successful self generated probes for QGP and pQCD in AA collisions, but with a lot of issues to be understood, e.g.:

• The traditional picture of semihard large angle gluon radiation (interference with several scattering centres) could be replaced by the interplay between the medium resolving power and the jet scale (radiation off from total to individual color charge).

• Hadronisation is assumed to happen outside the medium, except for QQbar.
Hard probes

Extremely successful self generated probes for QGP and pQCD in AA collisions, but with a lot of issues to be understood, e.g.:

- The traditional picture of semihard large angle gluon radiation (interference with several scattering centres) could be replaced by the interplay between the medium resolving power and the jet scale (radiation off from total to individual color charge)

- Hadronisation is assumed to happen outside the medium, except for QQbar

HP will be abundantly produced in eA colliders up to sizable E_T. They can be used to test factorisation and for precision studies QCD radiation in the nuclear environment.
Conclusions

ep/eA colliders at the TeV scale offer huge possibilities, not yet fully exploited:

- To provide most interesting information about QCD on their own:
 - partonic structure
 - new regimes of QCD
 - transverse structure of hadrons and nuclei
 - particle production and correlations

- To clarify aspects of pp, pA and AA collisions at high energy:
 - initial conditions for macroscopic descriptions
 - nature of collectivity
 - uncertainties in the extraction of parameters of the QCD
Conclusions

ep/eA colliders at the TeV scale offer huge possibilities, not yet fully exploited:

- To provide most interesting information about QCD on their own:
 - partonic structure
 - new regimes of QCD
 - transverse structure of hadrons and nuclei
 - particle production and correlations

- To clarify aspects of pp, pA and AA collisions at high energy:
 - initial conditions for macroscopic descriptions
 - nature of collectivity
 - uncertainties in the extraction of parameters of the QCD

For these and other reasons, ep and eA colliders would be highly desirable.