

Open heavy-flavour production in p-Pb collisions measured with ALICE at the LHC

Cristina Terrevoli for the ALICE Collaboration INFN and Univ. Padova

Outline

- Why heavy-flavour (HF) production studies in p-Pb collisions
- Open heavy-flavour reconstruction in ALICE
- Measurements in p-Pb collisions:
 - charmed-meson production
 - charmed-baryon production
 - leptons from heavy-flavour hadron decays
 - azimuthal correlations of D mesons and heavy-flavour decay electrons with charged particles
- Conclusions

Why heavy flavour in p-Pb collisions

charm and beauty: effective probes of Quark-Gluon Plasma (QGP) in heavy-ion collisions

see X. Zhang talk

Interpretation of Pb-Pb results requires understanding of cold nuclear matter (CNM) effects in initial and final state:

- shadowing/gluon saturation at low Bjorken-*x*
- parton transverse momentum broadening, cold nuclear matter parton energy loss
- constrain them by studying **p-Pb collisions**

p-Pb collisions not only reference for CNM effects: could collective effects in high-multiplicity p-Pb events modify HF particle production?

study role of collision geometry/particle density

Observables presented in this talk:

 Nuclear modification factor: modification in p-Pb w.r.t. pp collisions

Azimuthal correlations of **D mesons and HF decay electrons with charged particles**: •

 fragmentation of charm, properties of jets with charm content and possible collective effects in high-multiplicity p-Pb collisions

modification of gluon PDF in nuclear collisions: large uncertainties at low *x*

1.0

0.8

0.6

0.4

0.2

0.0

heavy-flavour hadron studies: D-meson production in min. bias collisions and as a function of event centrality in p-Pb collisions

D^0 down to $p_T = 0$

Standard analysis reconstructs D mesons selecting on secondary vertex: inefficient for $p_T < 1 \text{ GeV}/c$ For D⁰ low- p_T analysis:

PID selection, background subtraction method w/o reconstruction of D⁰ decay vertex

- efficiency larger by a factor of 20 at 1<*p*_T<2 GeV/*c*
- better significance than standard analysis for $p_T < 1 \text{ GeV}/c$

Combinatorial background subtraction via: event mixing, like sign, track rotation, side-band fit

prompt D⁰ p_T -differential cross section with and w/o vertexing method down to $p_T=0$

ALICE D CROSS SECTION IN p-Pb collisions News from RUN2

prompt D⁰ p_T -differential cross section with and w/o vertexing method down to $p_T=0$ pp and **p-Pb** prompt D⁰ p_T -differential cross sections: the most precise measurement obtained w/o vertexing for $0 < p_T < 1 \text{ GeV}/c$ and with vertexing for $p_T > 1 \text{ GeV}/c$ method

ALICE D CROSS SECTION IN p-Pb collisions News from RUN2

prompt D⁰ p_T -differential cross section with and w/o vertexing method down to $p_T=0$ pp and **p-Pb** prompt D⁰ p_T -differential cross sections: the most precise measurement obtained w/o vertexing for $0 < p_T < 1$ GeV/*c* and with vertexing for $p_T > 1$ GeV/*c* method prompt D⁺ *p*_T-differential cross section with vertexing method in **Run1** vs **Run2** data:

- uncertainties reduced by a factor of ~2
- extended *p*_T coverage, for all D-meson species

Nuclear modification factor D⁰,D⁺,D^{*+} meson *R*_{pPb} compatible within uncertainties

- *R*_{pPb} compatible with unity
 - but central values larger than 1 in 2<pt<12 GeV/c
- Average of non-strange D-meson R_{pPb} compared to D_s R_{pPb}: agreement within uncertainties

- larger differences between models at low p_T
- → need more precise pp reference at low p_T to disentangle between models

ALI-PREL-131661

Classes obtained slicing the energy deposited in neutron calorimeter on Pb-going side (ZNA) Q_{pPb} in most central (0-10%) and peripheral (60-100%) centrality ranges are compatible within uncertainties and compatible with unity

 $D^0 Q_{pPb}$ in comparison with charge-particles Q_{pPb}

- slight different centrality range
- agreement within uncertainties

D-meson production vs multiplicity

Classes obtained slicing the energy deposited in neutron calorimeter on Pb-going side (ZNA) Q_{pPb} in most central (0-10%) and peripheral (60-100%) centrality ranges are compatible within uncertainties and compatible with unity

Ratio central/peripheral: more precise measurement

- independent from pp-reference and several systematics uncertainties cancel in the ratio
 *Q*_{cp}>1 in 3-8 GeV/*c* with 1.7 σ
- Initial- or final-state effect?
- Possible influence of radial flow on HF particles in p-Pb?

heavy-flavour hadron studies: Λ_c production in p-Pb collisions

Λ_c measurement in p-Pb

News from RUN1

C.Terrevoli

measurements

Λ_c measurement in p-Pb

News from RUN1

C.Terrevoli

Open Heavy Flavour in pPb with ALICE

electrons and muons from heavy-flavour hadron decays

Heavy-flavour hadron decay lepton R_{pPb}

*R*_{pPb} consistent with unity
also consistent with

enhancement in $1 < p_T < 6 \text{ GeV}/c$ as seen in d-Au at $\sqrt{s_{NN}} = 200 \text{ GeV}$ (PRL 109 (2012) 242301)

 described by models including initial-state effects or with radial flow within uncertainties

RUN1

C.Terrevoli

RUN1

D-hadron azimuthal correlations

ALICE Azimuthal correlations of D mesons and HF decay electrons with **News from** charged particles access charm fragmentation and jet **RUN2** properties in presence of nucleus D meson-charged hadron correlation $5 < p_{_{\rm T}}^{\rm D} < 8~{\rm GeV}/c,~p_{_{\rm T}}^{\rm assoc} > 0.3~{\rm GeV}/c$ Very promising Average D^0 , D^+ , D^{*+} $8 < p_{_{
m T}}^{\rm D} < 16 \; {\rm GeV}/c, \; p_{_{
m T}}^{\rm assoc} > 0.3 \; {\rm GeV}/c$ - baseline (rad⁻¹) baseline-subtraction uncertainty (pp) - pp, $\sqrt{s} = 7$ TeV, $ly_{cms}^{D} l < 0.5$ reference in view of **ALICE Preliminary** EPJC 77 (2017) 245 baseline-subtraction uncertainty (p-Pb) Pb-Pb studies $3 < p_{T}^{D} < 5 \text{ GeV}/c, p_{T}^{assoc} > 0.3 \text{ GeV}/c$ ^{+14%}_{-11%} scale uncertainty (pp) Near side: modification ^{+13%}_{-10%} scale uncertainty (pp) $2 \mid \Delta \eta \mid < 1$ $\frac{1}{N_{\rm D}} \frac{{\rm d} \Lambda^{\rm assoc}}{{\rm d} \Delta \phi}$ ^{+13%}_{-10%} scale uncertainty (pp) ^{+4%}_{-4%} scale uncertainty (p-Pb) of parton fragmentation ^{+4%} scale uncertainty (p-Pb) ^{+4%}_{4%} scale uncertainty (p-Pb) Away side: look for yield suppression, path-length dependence of energy loss 0.5 0.5 0.5 ALI-PREL-133622 $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) $\Delta \varphi$ (rad) No modification observed in p-Pb compared to a pp reference after baseline subtraction $\frac{1}{2}$ 5 < p_{T}^{D} < 8 GeV/c, 1 < p_{T}^{assoc} < 2 GeV/c 1.4 $p_{\tau}^{\text{D}} < 5 \text{ GeV}/c, 1 < p_{\tau}^{\text{assoc}} < 2 \text{ GeV}/c$ - baseline (rad⁻¹) 1.2 Average D⁰, D⁺, D^{*+} ALICE \pm Simulations, pp, $\sqrt{s} = 7$ TeV PYTHIA6, Perugia 0 $|y_{cms}^{D}| < 0.5, |\Delta \eta| < 1$ **Run1 results:** PYTHIA6, Perugia 2010 ▪ p-Pb, √*s*_{NN} = 5.02 TeV EPJC (2017) 77: 245 PYTHIA6, Perugia 2011 0.6 baseline-subtraction uncertainty YTHIA8. Tune 4C Run2: significant OWHEG+PYTHIA6 0.4 dΔφ dΔφ 4% scale uncertainty scale uncertainty increase of precision + access new p_{T} intervals

Correlation distributions and their p_T trend well described by models

0.5

3 0

2.5

2

1.5

 $\Delta \phi$ (rad)

0.5

ALI-PREL-133691

1.5

 $\Delta \phi$ (rad)

2.5

2

3 0

(see backup)

HFe-hadron azimuthal correlations

Azimuthal correlations of D mesons and HF decay electrons with charged particles access charm fragmentation and jet properties in presence of nucleus

News from RUN2

Increased statistics of Run-2 sample allows us to study correlation in classes of centrality (ZN slicing) and look forward for possible flow modulation in central events —> stay tuned!

ALICE

Conclusions

ALICE results on open heavy-flavour production in p-Pb collisions at $\sqrt{s_{NN}} = 5.02$ TeV

- Compatible results with Run1 analysis, better precision, extended pr coverage
- *R*_{pPb} of charm mesons, baryon and leptons consistent with unity and models including CNM
- D R_{pPb} central values >1 in 2< p_T <12 GeV/c and described by CNM; disfavour QGP models that predict a significant suppression at high p_T
- Multiplicity dependent measurement: Q_{cp}>1 at 1.7σ 0-10%/60-100%.
 From initial- or final-state effects? radial flow in p-Pb?
- No significant difference between pp and p-Pb collisions for azimuthal correlations of D mesons with charged particles in minimum-bias p-Pb, precise measurement, good reference for next Pb-Pb runs

More differential measurements are ongoing We are looking forward to the pp run at 5 TeV in December to perform a high-precision measurement of the pp reference

Backup

p-Pb collisions: event-activity estimator

Centrality in p-Pb collisions: Phys. Rev. C 91 (2015) 064905

biases in the determination of <Ncoll>

- multiplicity fluctuations, jet-veto bias, geometrical bias
- Lose correlations between N_{part}, multiplicity and impact parameter b
- bias depends on estimator used for multiplicity determination

Experimentally:

V0A: $<N_{coll}>$ determined by Glauber fit of V0 amplitude **ZNA:** $<N_{coll}>$ obtained with a "Hybrid method"

- slice events in ZN energy (Pb going side)
- <N_{coll}> in ZN energy class obtained by scaling the minimum bias value with the ratio between the average charged-particle multiplicity at mid rapidity in the same class and that measured in the minimum bias sample

$$Q_{\rm pPb} = \frac{({\rm d}N^{\rm D}/{\rm d}p_{\rm T})_{\rm pPb}}{\langle T_{\rm pPb} \rangle \times ({\rm d}\sigma^{\rm D}/{\rm d}p_{\rm T})_{\rm pp}} \qquad \langle T_{\rm pPb} \rangle = \frac{\langle N_{\rm coll} \rangle_{i}}{\sigma_{\rm NN}}$$

investigate charm production in p-Pb collisions w.r.t. pp collisions: possible multiplicity dependent modification of the *p*_T spectra in p-Pb?

Measured raw yield includes **prompt D** and **feed-down D**

- Fraction of prompt D mesons usually estimated using theoretical predictions of production cross section for prompt and feed-down D mesons
- An alternative **data-driven approach** exploits the **different shape** of the distributions of the **transverseplane impact parameter** to the primary vertex (**d0**)
- Fraction of prompt D+ measured via an unbinned log-likelihood fit of the *d*0 distributions of D+ candidates in the invariant-mass region of the signal

Agreement between data driven method and FONLL-based method.

Comparable uncertainties 3<*p*_T<16 GeV/*c*

ALICE

Λ_c signal extraction in p-Pb

D-meson reconstruction

C.Terrevoli

D-hadron azimuthal correlations

Azimuthal correlations of D mesons and HF decay electrons with charged particles access charm fragmentation and jet properties in presence of nucleus

News from RUN2

Very promising reference in view of Pb-Pb studies Near side: modification of parton fragmentation Away side: look for yield suppression, path-length dependence of energy loss

Run1 results: EPJC (2017) 77: 245 Run2: significant increase of precision + access new *p*_T intervals

ALI-PREL-133622

D-hadron azimuthal correlations

Quantitative observables extracted from the fit:

- Near-side yield
- Near-side width
- Baseline value

e-hadron azimuthal correlations

Tagging efficiency

TPC No fits used for hadron contamination estimation

Invariant mass

- Main background sources are electrons from π^0 and η (Photon conversions in the detector material and Dalitz decays)
- Background subtraction is performed using the invariant mass method: pair with low invariant mass are selected (<140 MeV/ c²). Like sign pairs are used to subtract the combinatorial background

HFe-hadron azimuthal correlations

Azimuthal correlations of D mesons and HF decay electrons with charged particles access charm fragmentation and jet properties in presence of nucleus

News from RUN2

distributions corrected for efficiencies
electrons from background (main sources: so called "photonic") subtracted with invariant mass technique

Increased statistics of Run-2 sample allows us to study correlation in classes of centrality (ZN slicing) and look forward for possible flow modulation in central events —> stay tuned!

ALICE

D-meson production vs multiplicity

Classes obtained slicing the energy deposited in neutron calorimeter on Pb-going side (ZNA) Most central (0-10%) and peripheral (60-100%) centrality ranges are compatible within uncertainties and compatible with unity

*R***_{pPb} of of primary charged** π, K, p and multistrange baryons Ξ and Ω at mid-rapidity measured in p–Pb collisions at √ sNN = 5.02 TeV:

• hint of mass dependence of the R_{pPb}