Measurements of multi-particle correlations and collective flow with the ATLAS detector

Tomasz Bold, AGH UST Kraków, Poland on behalf of the ATLAS Collaboration

EPS HEP 2017, Venice, 5-12 July
Correlation measurements in ATLAS experiment

• Detailed measurements of correlations in the Pb-Pb system

• Measurement to answer fundamental question of correlations origin in small system

• In this talk only highlights from recent Pb-Pb results and new results for small systems

• All results can be found in: https://twiki.cern.ch/twiki/bin/view/AtlasPublic/HeavylionsPublicResults
Flow harmonics at Pb-Pb $\sqrt{s_{\text{NN}}} = 5.02$ TeV

- Measurement of the v_n in Pb-Pb at $\sqrt{s_{\text{NN}}} = 5.02$ TeV allowed to reach high p_T of 25 GeV, study very central collisions and measure harmonics up to $n=7$ [ATLAS-CONF-2016-105]

- Similar p_T dep. in all harmonics up to 10 GeV,
 - Above only $v_2\{\text{SP}\}$ is non-0 (slow fall), rise in 2PC measurement
 - Weak η dependence
 - The SP and EP method differ for v_2 only (~3%),
 - The v_n at $\sqrt{s_{\text{NN}}} = 2.76$ and 5.02 TeV energies are similar
Pb-Pb v_n decorrelation

- Majority of flow studies assume boost invariance in longitudinal direction
- The role/importance of the η dependent fluctuations
- ATLAS measured new observables „correlation between v_n in bins of η“ in Pb-Pb at $\sqrt{s_{NN}} = 2.76$ and 5.02 TeV [ATLAS-CONF-2017-003]

- $r_{n|n;k}$ expected 1 if longitudinal flow fluctuations not present, $k=1,2,3$
- $R_{n,n|n,n}$ sensitive to the event-plane twist

$R_{n,n|n,n}(\eta) = \frac{\langle q_n(-\eta)q^*_n(\eta_{\text{ref}}) \rangle}{\langle q_n^2(\eta) \rangle}$

Both variables robust against detector effects (ratios),
Observed no dependence on η_{ref} reference
Pb-Pb v_n decorrelation

- Factorisation of two particle v_{nn} into single particle v_n broken as function of η
- Effects slightly stronger for $\sqrt{s_{NN}}=2.76\text{TeV}$
- Centrality dependence for $r_{2|2;1}$ unlike higher n
- Event plane twist effect comparable to magnitude change
- Higher order indicate: $v_2 v_3$ long. fluct. independent, $v_4 \propto c v_2^2$, $v_5 \propto v_2 v_3$

ℓ The $v_2(\eta)$ decorrelates with centrality while $v_3(\eta)$ - and higher does not

Event plane twist has sizeable contribution - the v_2 decorrelation changing with centrality not caused by twist of event-plane.
Small systems measurements

• The observation of the ridge structure in 2PC in p-p opened discussion on the small systems:

• Robust method required for long-range correlation measurements in small systems

 • 2PC method require elaborate non-flow subtraction [arXiv:1609.0621

• „Orthogonal“ measurement: azimuthal HBT analysis
By correlating particles from rapidity separated sub-events the self-correlation (mostly di-jets) is mostly suppressed

\[v_n\{2\}_n = \sqrt{c_n\{2\}} \quad \text{and} \quad v_n\{4\}_n = \frac{4}{4} \!-\! c_n\{4\} \]

Negative \(C_2\{4\} \) indicates collectivity

arXiv: 1701:03830
C₂{4} from sub-event cumulants

Standard cumulant meth. indicates no v₂{4} unless for very specific reference particles choice and event multiplicity.

Signs of improvement in 2 sub-event cumulant. Weakly dependent on the choice of reference particles.

The 3 sub-event cumulant: Consistently below 0. Independent on the choice of reference particles. Negative C₂{4} at low mult.

All methods consistent in p-Pb. Tests on MC indicate suppression of the non-flow v₂=0.

Measurements of multi-particle correlations and collective flow with the ATLAS detector
Sub-event cumulant results

The $v_2\{4\}$ obtained in p-p (wide multiplicity range) and p-Pb.
Nearly independent of ev. multiplicity in three systems, very little $\sqrt{s_{NN}}$ dep. in p-p

The v_2 with reduced non-flow contributions lower than measured previously

The v_3 consistent with 0

$v_2\{4\}/v_2\{2\}$ estimate number of sources (model dependent: [Phys. Rev. Lett. 112, 082301 (2014)])

Same multiplicity = same number of sources irrespectively of the collision system!

Consistent with F-B multiplicity correlation results [PRC 95 (2017) 064914]
Muon-hadron correlations

• Heavy flavour long range correlations studied through muon-hadron correlation

• ATLAS measured the azimuthal muon-hadron correlations in Pb-Pb collisions at 2.76 TeV [ATLAS-CONF-2015-053]
 • observed v_2 in range of $4<p_T<12$ GeV from 6 to ~0%

• Now also measured in p-Pb at $\sqrt{s_{NN}}=8.16$ TeV
 • high-multiplicity + muon trigger to collect the sample
 • 2PC method with template fits to subtract non-flow contribution [ATLAS-CONF-2017-006]
Measurements of multi-particle correlations and collective flow with the ATLAS detector

Results: muon-hadron correlation

A significant h-μv_2 observed (about 60% lower than h-h - mind p_T range difference)

Independent of event multiplicity

The p_T dependence resembles h-$h v_2$ at high p_T (mind that muons are from HF decays - additional kinematics to take into account before comparison)

Significant azimuthal anisotropy of HF particles observed in p-Pb
Summary

In correlation measurements ATLAS concentrates on:

- **Detailed understanding of correlations properties in Pb-Pb collisions**

 - High precision thanks to large statistics available

 - New observables: short & long range component in FB multiplicity correlations, v_n decorrelations

- **Advanced methods to answer the question on the origin of correlations in small systems**

 - Advancing non-flow components removal, novel sub-event cumulant provides robust results

 - Performed muon-hadron correlation analysis

 (in backup: observation of azimuthal modulation of source size)
Backup
Azimuthal HBT results

- Modulation of source radii in small system favours evolution scenario

- **Now performed azimuthal HBT analysis** [ATLAS-CONF-2017-008] (inclusive [arXiv:1704.01621])
 - Data set enhanced by high-multiplicity events, Event Plane (EP) established in „forward” calorimeter region, results corrected for EP resolution
 - Measured are relative radii change as function of distance from the EP and its scaling with overall azimuthal asymmetry (magnitude of the elliptic flow vector $|q_2|$)

- Measurements of multi-particle correlations and collective flow with the ATLAS detector