

π^0 -hadron correlations in pp and Pb–Pb collisions measured at the ALICE experiment

Xinye Peng

on the behalf of the ALICE Collaboration

Central China Normal University, China Padova University & INFN, Italy

EPS-HEP - July 7, 2017

EPS-HEP – July 7, 2017

- Physics Motivation
- ALICE Setup
- Analysis strategy
- Results: pion-hadron correlations PLB 763 (2016) 238-250
- Conclusion and Outlook

- (the Quark-Gluon Plasma) is formed
- Jet quenching (strong evidence for QGP formation) can be investigated via: 0
 - inclusive hadron and jet production
 - di-jet energy imbalance
 - modification of jet fragmentation functions
 - two-particle azimuthal correlations

Results from **RHIC** to **LHC**

Heavy-ion collisions: hot, dense, deconfined and strongly interacting QCD medium

- Two main observables: \bigcirc

X. Peng

- 0 (the Quark-Gluon Plasma) is formed
- Jet quenching (strong evidence for QGP formation) can be investigated via:
 - inclusive hadron and jet production
 - di-jet energy imbalance
 - modification of jet fragmentation functions
 - **pion-hadron correlations** \bigcirc
 - constraints on parton energy loss
 - provide a gauge for the background
 - in gamma-hadron correlations

Heavy-ion collisions: hot, dense, deconfined and strongly interacting QCD medium

ITS (Inner Tracking System) six cylindrical layers of silicon detectors, $|\eta| < 0.9$

- localize the primary and secondary vertices.
- track and identify particles down to $p_{\rm T}$ \sim 100 MeV/c
- TPC (Time Projection Chamber) a cylindrical gas detector, $\ln < 0.9$
 - charged particle momentum $(0.15 < p_{\rm T} < 100 \text{ GeV}/c)$
 - particle identification (dE/dx)resolution better than 10%)

EMCal (Electro Magnetic Calorimeter) a lead-scintillator sampling calorimeter,

 $|\eta| < 0.7, \quad \frac{\sigma_E^2}{F^2} = A^2 + \frac{B^2}{F} + \frac{C^2}{F^2} (d\sigma/dE \text{ resolution better than 4\% above 10 GeV/c})$

- trigger capabilities
- high energy jets
- high- $p_{\rm T}$ neutral mesons, photons and electrons

Nucl.Instrum.Meth.A615:6-13,2010 data taken in the year 2011; 440K (5.2 M) events in pp (Pb-Pb) collision at $\sqrt{s_{NN}} = 2.76 \text{ TeV}$

- π^0 measurement Ο
 - \checkmark select π^0 candidate cluster with Shower Shape cut
 - split cluster into two clusters, calculate the invariant mass
- charged particles are detected by the central tracking system ITS + TPC Ο
- correlate π^0 with charged particles Ο
- corrections Ο
- background subtraction Ο

 π^0 decay photons start to merge for E > 6 GeV

- Select clusters with elongated λ_0^2 shower shape
- A cluster is split in 2 sub-clusters, the seed are the 2 highest
 - energy cells or local maxima. Select cells around
 - Select those with invariant mass at 3 sigma of the π^0 mass

red, green: Correlated **blue:** Un-correlated

- Per-trigger yield in two regions
 - ✓ Near side: $|\Delta \varphi| < 0.7$ rad
 - ✓ Away side: $|\Delta \varphi \pi| < 1.1$ rad

Subtract the background with ZeroYieldAtMinimum

✓ Flat background (pp) \checkmark v_n background (Pb-Pb)

$$J(\Delta \varphi) = C(\Delta \varphi) - b_0(1 + 2\sum_{n=2}^{5} < v_n^{trig} > < v_n^{assoc} > \cos(n\Delta \varphi))$$

Results: azimuthal distributions in pp and Pb-Pb

pp \sqrt{s} = 2.76 TeV

- Trigger π^0 : 8 < p_{T}^{trig} < 16 GeV/c
- Associated charged hadron: $0.5 < p_T^{assoc} < 6.0$ GeV/c with several bins ullet

0-10% Pb-Pb $\sqrt{s_{NN}}$ = 2.76 TeV

PLB 763 (2016) 238-250

pion-hadron: PLB 763 (2016) 238-250 di-hadron: Phys. Rev. Lett. 108 (2012) 092301

agreement at high $p_{\rm T}$

Results: modification factor I_{AA} (Away side)

di-hadron: Phys. Rev. Lett. 108 (2012) 092301

EPS-HEP – July 7, 2017

agreement at high $p_{\rm T}$

Results: *I*_{AA} compared with models

PLB 763 (2016) 238-250

jet-medium interactions

EPS-HEP – July 7, 2017

In AMPT the low- p_T^{assoc} enhancement is attributed to the increase of soft particles as a result of the

- π^0 -hadron correlations as a function of azimuthal angle difference $\Delta \varphi$ at midrapidity in pp and central Pb–Pb collisions at $\sqrt{s_{NN}} = 2.76$ TeV have been measured
- The per-trigger yield modification factor, I_{AA} , has been measured for the near and away side in 0–10% most central Pb–Pb collisions
 - \checkmark Extend the results to low $p_{\rm T}$, both near and away side show enhancement
 - \checkmark Measured I_{AA} comparison to models, away-side suppression reproduced by JEWEL, NLO and AMPT but enhancement on near and away side only qualitatively reproduced by AMPT

Perspectives:

- \bigcirc
- Ultimate goal: gamma-hadron correlations 0

Study this phenomenon further and in depth with different collision systems (p-Pb) and energies

Source	$Y(\Delta \varphi)$ pp	$Y(\Delta \varphi)$ Pb–Pb	$ I_{AA}$ (NS)	$ I_{AA}(AS) $
Tracking efficiency	5.4%	6.5%	8.5%	8.5%
MC closure	1.0%	2.0%	1.2%	1.2%
TPC-only tracks	1.0%	3.5%	4.3%	3.8%
Track contamination	1.0%	0.9%	1.1%	1.1%
Shower shape (λ_0)	1.2%	0.7%	3.4%	2.6%
Invariant mass window	1.3%	1.0%	3.5%	3.3%
Neutral pion purity	0.3%	1.1%	0.6%	0.5%
Pair $p_{\rm T}$ resolution	1.0%	1.1%	0.3%	0.3%
Pedestal determination	_	—	9.4%	11.7%
Uncertainty on v _n			7.1%	5.1%
Total	6.7%	7.4%	12.6%	15.0%

AMPT: \bigcirc

- Parton and hadron cascades with elastic scattering String melting and parton recombination for hadronization \bigcirc Use a standard triggered jet technique which is a part of HIJING for Pb-Pb

JEWEL: \bigcirc

- Parton-medium interactions with microscopic description of transport coefficient q hat
- Hard scatter from Glauber collision geometry
- Elastic and radiative energy loss implement by LPM interference effects

NLO-pQCD: 0

- Nuclear parton distribution functions for initial-state cold nuclear matter effects
- Phenomenological model for medium-modified fragmentation functions
- 3+1 dimensional ideal hydrodynamic model for the evolution of bulk medium

