

Multi-Particle Azimuthal Correlations in High-Multiplicity pp & pPb Collisions at CMS

CESAR A. BERNARDES

FOR THE CMS COLLABORATION

Outline

Azimuthal Correlations in AA Collisions

Measurements in PbPb Collisions by CMS

Studies of Small Systems (pp, pPb)

Analysis Methods for Multi-Particle Correlations

Recent Results in Small Systems by CMS

Introduction – Azimuthal Correlations in AA Collisions

Most of the AA Data well Described by Hydrodynamics

"Ridge" in All Systems

Similar to AA collisions

□ Long-range near-side correlations in **High-Multiplicity** pp and pPb collisions

Are small systems behavior similar to AA?

Similar ridge structure as in AA

□ Higher relative contribution from jets

Questions

- Is collectivity present in small systems?
 - If yes, what is the origin? Is it similar to AA collisions?

Importance

 Opportunity to study non-perturbative QCD in very high density regime

Procedure

- Perform key measurements for pp and pPb to compare with PbPb
 - $\,\circ\,\,$ Two- and Multi-Particle v_n measurements for charged particles and V_0's
 - Comparison with different energies
 - $\circ~$ Correlations between \boldsymbol{v}_n coefficients

Two-and Multi-Particle Analyses

Projection in $\Delta \phi$ removing short-range correlations ($|\Delta \eta| > 2$)

Back-to-back di-jets estimated using low-multiplicity events

Two-and Multi-Particle Analyses

Description of two-particle correlations via Fourier expansion $1 < p_T^{trig}$, $p_T^{assoc} < 3$ GeV/c dN^{pair} $\frac{dM}{d\Delta \phi} \propto 1 + \sum_n 2V_{n\Delta} \cos(n\Delta \phi)$, $V_{n\Delta}$ two-particle coefficient Long range ($|\Delta \eta| > 2$) • $v_n = \sqrt{V_{n\Delta}}$ (single-particle anisotropy coefficient) +105 \leq N < 150 0.05 dV 0.05 **⊕**10 ≤ N < 20 Q-cumulant method for multi-particle correlations 2-, 4-, and 6-particle correlators $\circ \left\langle \left\langle 2 \right\rangle \right\rangle_{n} \equiv \left\langle \left\langle e^{in(\varphi_{1} - \varphi_{2})} \right\rangle \right\rangle, \ \left\langle \left\langle 4 \right\rangle \right\rangle_{n} \equiv \left\langle \left\langle e^{in(\varphi_{1} + \varphi_{2} - \varphi_{3} - \varphi_{4})} \right\rangle \right\rangle$ $\circ \langle \langle 6 \rangle \rangle_{n} \equiv \left\langle \langle e^{in(\phi_{1} + \phi_{2} + \phi_{3} - \phi_{4} - \phi_{5} - \phi_{6})} \rangle \right\rangle$ $\Delta \phi$ (radians) $\langle \langle ... \rangle \rangle$:= average over all combinations and all events Projection in $\Delta \phi$ removing short-range correlations ($|\Delta \eta| > 2$)

Back-to-back di-jets estimated using low-multiplicity events

Two-and Multi-Particle Analyses

Description of two-particle correlations via Fourier expansion

• $v_n = \sqrt{V_{n\Delta}}$ (single-particle anisotropy coefficient)

Q-cumulant method for multi-particle correlations 2-, 4-, and 6-particle correlators

$$\circ \langle \langle 2 \rangle \rangle_{n} \equiv \left\langle \left\langle e^{in(\phi_{1} - \phi_{2})} \right\rangle \right\rangle, \ \left\langle \langle 4 \rangle \right\rangle_{n} \equiv \left\langle \left\langle e^{in(\phi_{1} + \phi_{2} - \phi_{3} - \phi_{4})} \right\rangle \right\rangle$$

$$\langle \langle 6 \rangle \rangle_{n} \equiv \langle \langle e^{in(\psi_{1} + \psi_{2} + \psi_{3} - \psi_{4} - \psi_{5} - \psi_{6})} \rangle \rangle$$

 $\langle \langle ... \rangle \rangle := average over all combinations and all events$

 $\Delta \phi$ (radians) Projection in $\Delta \phi$ removing short-range correlations ($|\Delta \eta| > 2$)

dV dV 0.05

Cumulants

•
$$c_n\{4\} = \langle\langle 4 \rangle \rangle - 2\langle\langle 2 \rangle \rangle^2$$
; $v_n\{4\} = \sqrt[4]{-c_n\{4\}}$
• $c_n\{6\} = \langle\langle 6 \rangle \rangle - 9\langle\langle 4 \rangle \rangle \langle\langle 2 \rangle \rangle + 12\langle\langle 2 \rangle \rangle^3$; $v_n\{6\} = \sqrt[6]{c_n\{6\}/4}$

Back-to-back di-jets estimated using low-multiplicity events

 $1 < p_T^{trig}$, $p_T^{assoc} < 3$ GeV/c

Long range $(|\Delta \eta| > 2)$

+105 \leq N < 150

⊕10 ≤ N < 20

Reduces non-flow effects (jets, resonances, etc...)

Results

 $(v_2 \& v_3) v_5 N_{trk}^{offline}$

v_2

Similar trends for the three systems

- Smaller magnitudes for small systems
- No or very small dependence as a function of energy

v_3

- Similar trends between pPb and PbPb
 - Different trends for pp collisions at HM
- No or very small dependence as a function of energy

Some descriptions with Hydrodynamics: superSONIC [arxiv:1701.07145]

Interpretations using other mechanisms are possible: e.g. CGC

 $v_2 \text{ vs } p_T \text{ (for } h^{\mp}, K_S^0, \text{ and } \Lambda/\overline{\Lambda})$

Mass ordering in all systems at HM up to $p_T{\sim}2GeV$

- Connected with radial flow
- □ Higher separations in pPb and pp collisions
- Interpretations in hydrodynamic models and CGC
 - AMPT parton scape mechanism [arxiv:1604.07387]
 - UrQMD hadronic interaction [PRC 91, 064908 (2015)]
 - CGC + string fragmentation [PRL 117, 162301 (2016)]

$(v_2{2}, v_2{4}, v_2{6}, v_2{8}, v_2{\infty}) vs N_{trk}^{offline}$

Similar features among different systems

- □ $v_2{4} \approx v_2{6}$ (in pp), $v_2{4} \approx v_2{6} \approx v_2{8}$ (in pPb), and $v_2{4} \approx v_2{6} \approx v_2{8} \approx v_2{\infty}$ (in PbPb) • Strong Evidence for Collectivity!
- □ Unlike pPb and PbPb: $v_2{2} \approx v_2{4 \& 6}$ for pp in higher multiplicities (>100)

 (v_2, v_3, v_4) vs N^{offline}

Similar trends among the three systems!

 \Box For pPb: compatible results between 5 and 8 TeV for both v_2 and v_3

Di-jets corrections have higher effects in pp and lower multiplicities

New : 8 TeV pPb Collisions!

Before subtraction of di-jets correlations

Correlations between $(v_2 \& v_3)$, $(v_2 \& v_4)$ vs $N_{trk}^{offline}$ [I]

Symmetric Cumulants (SC) from 4-particle correlations

• SC(n, m) =
$$\langle \langle 4 \rangle \rangle_{n,m} - \langle \langle 2 \rangle \rangle_n \cdot \langle \langle 2 \rangle \rangle_m = \langle v_n^2 v_m^2 \rangle - \langle v_n^2 \rangle \langle v_m^2 \rangle$$

• $\langle \langle 4 \rangle \rangle_{n,m} \equiv \langle \langle e^{i(n\phi_1 + m\phi_2 - n\phi_3 - m\phi_4)} \rangle \rangle, \langle \langle 2 \rangle \rangle_n \equiv \langle \langle e^{in(\phi_1 - \phi_2)} \rangle \rangle$

New : 8 TeV pPb Collisions!

Overall similar behavior for pPb and PbPb (same origin of correlations???)

• SC(2,3) becomes negative (anti-correlation) for $N_{trk}^{offline} > 60$

Correlations between ($v_2 \& v_3$), ($v_2 \& v_4$) vs N^{offline}_{trk} [II]

1.0

 $SC(2,3)/\left(\langle v_2^2 \rangle \langle v_3^2 \rangle\right)$ = 0.0= 0.0

-1.0

Ω

SÃO PAULO RESEARCH AND ANALYSIS CENTER

CMS Preliminary

Normalize SC(2,3) by $\langle v_2^2 \rangle \langle v_3^2 \rangle \&$ SC(2,4) by $\langle v_2^2 \rangle \langle v_4^2 \rangle$ $\lor \langle v_n^2 \rangle \langle v_m^2 \rangle$ from 2-particle correlations

Normalized SC(2,3)

 \square Similar values for pPb and PbPb for $N_{trk}^{offline} > 120$

• Indicates similar origin for collectivity

• pp is close but with large uncertainties

Normalized SC(2,4)

Different magnitudes in pPb and PbPb

May point to different contributions from initial state fluctuations and/or transport properties of the medium.

CMS PAS HIN-16-022

New : 8 TeV pPb Collisions!

CMS Preliminary

9 July 2017

Summary

Latests results on azimuthal correlations in small systems from CMS

- Evidence for collectivity in pp and pPb collisions
- □ Similar trends compared to PbPb in:
 - $\circ \ v_n{'}\!s$ as a function of multiplicity
 - $\,\circ\,\,v_2$ for inclusive charged hadrons (mostly pions) and $V_0{\,}'s$ as a function of p_T
 - $\,\circ\,$ Correlations between v_2 and v_3 as a function of multiplicity
- $\hfill\square$ Different trends in the correlations between v_2 and v_4
 - Indicating different contributions from initial state fluctuations and/or transport properties of the medium

This is a VERY active area...

- Many results comming from different experiments
- Many theoretical studies being developed

Is QGP formed in small systems? Not enough information to answer this yet...

□ Additional studies and more precise measurements will come soon.

Thank You

BACKUP

Event Reconstruction & Track Selections

Similar event reconstruction and track selections in pp, pPb, and PbPb

- Minimum Bias events
 - Trigger: HF energy deposits (coincidence)
 - Multiplicity < 85
- High-multiplicity events
 - Trigger:
 - ECAL/HCAL energy deposits (Level1)
 - Tracking (High Level Trigger)
 - Multiplicity > 85
- Tracks selected for analyses
 - $\circ~0.3 < p_T < 3~\text{GeV}$ and $|\eta|~<2.4$
- \Box For multiplicity classification (N^{offline}_{trk})
 - $\,\circ\,$ Selected tracks: $p_{\rm T}>0.4~{\rm GeV}$ and $|\eta|~<2.4$ (to match trigger selection)

Di-jet Correlation Subtraction Method (I)

Subtraction is done in two-particle coefficient ($V_{n\Delta}$)

- \Box Assumes similar shapes for jet correlations in low (10 < N^{offline}_{trk} < 20) and high-multiplicities
- $\hfill\square$ Assumes there is no signal (ridge) contribution to v_2 in low multiplicity

Di-jet Correlation Subtraction Method (II)

$c_2\{4\}$ as a function of $N_{trk}^{offline}$ for charged particles

Similar trends between pPb and pp!

Indication of energy dependence for pp

Larger c_2 {4} for lower energies

• Can be connected to the fact that average p_T values are slightly smaller at lower energies \rightarrow smaller negative contribution to $c_2\{4\}$.

ATLAS vs CMS Results from pp Collisions

Different magnitudes in all multiplicity ranges and trends in lower multiplicities

- This was checked to be mainly due to distinct procedures applied
- Mainly in the jet correlation removal
- Discussions and cross-checks ongoing among the experiments
- When using the same procedure get consistent results between CMS and ATLAS data

