Multiplicity dependence of the production of identified charged hadrons in pp and pPb collisions from CMS

Ferenc Siklér

Wigner RCP, Budapest

for the CMS Collaboration

EPS HEP 2017, Lido di Venezia 6 Jul 2017

Outline

- Charged π , K, and p in pp at $\sqrt{s} = 13 \text{ TeV}$
 - Results are public: arXiv:1706.10194 (hep-ex), submitted to Phys Rev D
 - Trigger, tracking, vertexing
 - Energy deposits and energy loss rate
 - Determination of particle yields
 - Corrections
 - Inclusive measurements
 - Multiplicity-dependent measurements
 - Comparisons to

```
* pp, \sqrt{s} = 0.9, 2.76, and 7 TeV [EPJC 72 (2012) 2164]
```

* pPb, $\sqrt{s_{\rm NN}} = 5.02 \text{ TeV}$ [EPJC 74 (2014) 2847]

* peripheral PbPb [from ALICE]

With emphasis on particle spectra and ratios

The scene

- Long history both in high energy particle and nuclear physics
- One of the simplest and most relevant physics quantities
- Scaling properties of particle production; predictions of models and generators
- Growing interest in small systems with high multiplicity
- PID: p < 1.20 for π^{\pm} , p < 1.05 for K^{\pm} , and p < 1.70 GeV/c for p/\overline{p}

Accessible region is also limited by η acceptance of the tracker Final results are given for |y| < 1

Trigger, event definition

Data

- Special low luminosity run, collected in July 2015
- The average number of pp interactions in each bunch crossing was 1.0
- About 7 million events; uncertainties are dominated by systematics
- Online and offline event selections
 - Coincidence of signals from both proton bunches present
 - At least one reconstructed interaction vertex
 - Beam-halo and beam-induced background events were rejected
- We corrected to the inelastic selection, closest to actual trigger
 - Fraction of inelastic pp collisions not resulting in a reconstructed interaction is about $14\% \pm 3\%$; they are mostly diffractive ones with negligible central activity

Used MC event generators are Pythia6 Z2*, Pythia8 CUETP8M1, and EPOS LHC

Tracking performance

- Tracking corrections
 - Acceptance, efficiency, fake tracks, unfolding $p_{\scriptscriptstyle T}$ bias and resolution
- Non-primaries
 - Feed-down from K^0_S and $\Lambda/\overline{\Lambda}$ via MCs (not measured yet); secondaries Excellent tracking performance, for pions down to $p_{\rm T}=0.1~{\rm GeV/c}$

Analytical energy loss parametrization – validation

The central quantity is the

most probable energy loss rate arepsilon along a reference length l_0

Probability of an energy loss y, along a path length l $P(y|\varepsilon,l)$ has exponential and Gaussian parts

Analytical model with few (4) parameters; a very good match

Most probable energy loss rate ε

• Estimation of ε , for each track

- We have the properly corrected deposits y_i along the trajectory
- Minimize the joint energy-deposit χ^2 for a track
- False hit removal (energy deposit outliers)
- Estimate of ε

Fits in (η, p_T) bins

Template fits

- They are not Gaussians: use tracks in data
- Keep all quantities, but regenerate energy deposits with the parametrization

High quality fits, good χ^2/ndf

Fits in (η, p_T) bins

Total momentum range used for physics is limited by systematic uncertainty We give results in |y| < 1 (dictated by PID capabilities)

Results – p_{T} spectra

Statistical (error bars) and systematic uncertainties (boxes) The fully correlated normalization uncertainty (not shown) is 3–4%

$$\begin{split} \text{Tsallis-Pareto:} \ \ \frac{\mathrm{d}^2 N}{\mathrm{d}y\,\mathrm{d}p_\mathsf{T}} &= \frac{\mathrm{d}N}{\mathrm{d}y} \cdot C(m,n,T) \cdot p_\mathsf{T} \left[1 + \frac{\mathsf{m}_\mathsf{T} - m\,c}{nT}\right]^{-n} \\ &\quad \text{The fits are of good quality} \end{split}$$

Results – p_{T} spectra

Logarithmic vertical scale

Reasonable job from generators

Pythia8 CUETP8M1 is the best (thanks to tuning at 7 TeV)

Results – ratios vs p_{T}

• $p_{\scriptscriptstyle T}$ dependence

- K/π ratios are are **well approximated** by Pythia8 and EPOS LHC
- Ratios of oppositely charged particles are compatible with 1, indep of $p_{\scriptscriptstyle T}$

Track multiplicity classes

How?

- take the measured $\mathrm{d}^2 N/\mathrm{d}\eta\,\mathrm{d}p_{\scriptscriptstyle T}$ values
- use adjusted MC corrections (take PID ratios from data)
- correct for low $p_{\scriptscriptstyle T}$ part $(p_{\scriptscriptstyle T} < 0.1~{
 m GeV/c})$, assuming a linear startup with $p_{\scriptscriptstyle T}$
- no Tsallis fits are needed here

The classes

	"peripl	heral"		"central"			
N_{rec}	0-9 10-19 20-29			130–139 140–149 150–159	160–169		
$\overline{\langle N_{\sf track}}$	7 16 28 4	0 51 63 74 85 97	108 119 130 14	1 151 162 172	183 187		

Collect data in $N_{\rm rec}$, and plot the results in (theoretical) $\langle N_{\rm tracks} \rangle$ bins We give the corresponding fully corrected $N_{\rm tracks}$ values in $|\eta| < 2.4$

 $N_{\rm tracks}$ – Poor man's centrality measure

Results – multiplicity dependence

The values with increasing multiplicity are successively shifted by 0.1 units along the vertical axis

Unchanged (pion) vs changed shapes (kaons)

Results – multiplicity dependence

The values with increasing multiplicity are successively shifted by 0.1 units along the vertical axis

Strong change for protons

Results – ratios – multiplicity dependence

- Cross ratios
 - K/π and p/π ratios are flat
- Opposite charge ratios
 - The ratios are close to 1, no dependence on $\langle N_{\mathsf{tracks}} \rangle$

Results – $\langle p_{\mathsf{T}} \rangle$ – multiplicity dependence

Calculated using MC technique followed by numerical integration Error bars show the combined $\sqrt{\text{stat}^2 + \text{syst}^2}$ errors, boxes give systematic only None of the MCs reproduces well the multiplicity dependences for all species All generators overestimate the measured values for kaons

Comparisons – \sqrt{s} dependence – pp

Comparing to previous CMS measurements with double sided (DS) selection. The curves show parabolic (dN/dy) or linear $(\langle p_{\tau} \rangle)$ fits in $\ln s$

Comparisons – \sqrt{s} dependence – physics message

- Both $\langle p_{\rm T} \rangle$ and yield ratios show **very similar dependences** on the **particle multiplicity**, independently of \sqrt{s}
- The \sqrt{s} -evolution provides information on the "saturation scale" (Q_{sat}) of the gluons in the proton [d'Enterria, Pierog JHEP 08 (2016) 170]

Comparisons – \sqrt{s} dependence – physics message

- Minijet-based models such as Pythia have an energy-dependent infrared p_{T} cutoff that mimics the power-law evolution of Q_{sat} characteristic of gluon saturation models [McLerran et al, Nucl Phys A 916 (2013) 210]
- Saturation models consistently connect $Q_{\rm sat}$ to the impact parameter of the hadronic collision, giving a natural dependence of $\langle p_{\scriptscriptstyle T} \rangle$ on the multiplicity

Comparisons – \sqrt{s} dependence – pp vs pPb

- For low track multiplicity ($N_{\rm tracks} \lesssim 40$), **pPb behaves very similarly to pp**; mostly peripheral pPb collisions are present with a few proton-nucleon collisions
- By asking for more produced particles those collisions are chosen,
 where the projectile proton collided with the thick disk of the lead nucleus

Comparisons – \sqrt{s} dependence – pp vs pPb vs PbPb

pp (0.9, 2.76, 7 TeV), pPb (5.02 TeV), PbPb (2.76 TeV, periph to central bands)

- **Highest multiplicity** pPb interactions yield higher $\langle p_{\rm T} \rangle$ than in central PbPb collisions (Phys Rev C 88 (2013) 044910), or reach those values in case of pp
- Even the most central PbPb collisions contain a mix of soft and hard
- In case of pp or pPb specifically the most violent interactions are selected

Summary

Results

- Measured inelastic spectra of identified charged hadrons in pp $\sqrt{s}=13$ TeV; as a function of track multiplicity

Conclusions

- Particle production at LHC energies is strongly correlated with event multiplicity in both pp and pPb, rather than with the center-of-mass energy of the collision or with the masses of the colliding nuclei
- Common underlying physics mechanism: the characteristics of particle production are constrained by the amount of initial parton energy that is available in any given collision
- Success of gluon saturation models with Q_{sat} ; as well as minijet-based models with energy-dependent cutoff

Thank you for your attention!

National Research, Development and Innovation Office of Hungary (K 109703) Swiss National Science Foundation (SCOPES 152601)

Backup

Systematic uncertainties

C	Uncertainty	Propagated		
Source	of the source [%]	yield uncertainty		[%]
Fully correlated, normalization				
Correction for event selection	3.0 (1.0))		
Pileup correction (merged and split vertices)	0.3	}	3-4 (5-9)	
$High-p_T$ extrapolation	1-3 (4-8)	J		
Mostly uncorrelated				
Pixel hit efficiency	0.3		0.2	
Misalignment, different scenarios	0.1	}	0.3	
Mostly uncorrelated, (y, p_{T}) -dependent		π	K	p
Acceptance of the tracker	1–6	1	1	1
Efficiency of the reconstruction	3–6	3	3	3
Multiple-track reconstruction	50% of the corr.	_	_	_
Misreconstructed-track rate	50% of the corr.	0.1	0.1	0.1
Correction for secondary particles	25% of the corr.	0.2	_	2
Fit of the $arepsilon$ distributions	1–10	1	2	1

Consistent propagation of uncertainties (mapping, fits, unfolding, integration)