

On behalf of the HI Working Group of FCC-hh/Physics&Exp

Heavy Ions at the Future Circular Collider

Carlos A. Salgado IGFAE - Santiago de Compostela

EPS-HEP 2017 - Venezia

@CASSalgado @HotLHC

Scope of FCC study

International FCC collaboration (CERN as host lab) to study:

pp-collider (FCC-hh) → main emphasis, defining infrastructure requirements

~16 T \Rightarrow 100 TeV pp in 100 km

- ~100 km tunnel infrastructure in Geneva area, site specific
- e⁺e⁻ collider (FCC-ee), as potential first step
- p-e (FCC-he) option, integration one IP, e from ERL
- **HE-LHC** with *FCC-hh* technology
- CDR for end 2018

[Slide from Michael Benedikt - FCC week Berlin 2017]

HIC - Organization

lons at FCC-hh Working Group:

Coord: A. Dainese, S. Masciocchi, CAS, U. Wiedemann Sub-group of "FCC-hh Physics, Experiments, Detectors" Participation of CERN Beams dep. (J. Jowett, M. Schaumann) Contact with HI theory group of chinese project CEPC-SppC

Twiki https://twiki.cern.ch/twiki/bin/view/LHCPhysics/Heavylons

6 workshops/meetings 2013-15

https://indico.cern.ch/event/331669/ and links therein

Report included in the CERN Yellow Report in FCC-hh Physics [arXiv:1605.01389, CERN Yellow Report (2017) no.3, 635-692]

60 pages, about 50 authors

Section editors: N. Armesto, A. Dainese, D. d'Enterria, J. Jowett, J.P.Lansberg, G. Milhano, C. Salgado, M. Schaumann, M. van Leeuwen, U. Wiedemann

PbPb/pPb parameters

Operation mode		Pb–Pb	p–Pb
Beam energy	[TeV]	4100	50
$\sqrt{s_{ ext{NN}}}$	[TeV]	39.4	62.8
No. of bunches per LHC injection	-	518	518
No. of bunches in the FCC	-	2072	2072
Initial luminosity	$[10^{27} \text{cm}^{-2} \text{s}^{-1}]$	24.5	2052
Peak luminosity	$[10^{27} {\rm cm}^{-2} {\rm s}^{-1}]$	57.8	9918
Integrated luminosity per fill	$[\mu \mathrm{b}^{-1}]$	553	158630
Average luminosity	$[\mu \mathrm{b}^{-1}]$	92	20736
Time in collision	[h]	3	6
Assumed turnaround time	[h]	1.65	1.65
Integrated luminosity/run	$[nb^{-1}]$	33	8000

Michaela Schaumann FCC week Berlin - May 2017

110

29.000

PbPb/pPb parameters

Physics

Very high energies and luminosities

Quark-Gluon Plasma studies

Global and collective Jet quenching and hard processes

Small-x physics and initial stages

nuclear PDFs CGC/Saturation **Thermalization**

Photon-photon (and other UPC) collisions

Also fixed target, and other opportunities

Global properties

Quantity	Pb-Pb 2.76 TeV	Pb-Pb 5.5 TeV	Pb-Pb 39 TeV
$\mathrm{d}N_\mathrm{ch}/\mathrm{d}\eta$ at $\eta=0$	1600	2000	3600
Total $N_{ m ch}$	17000	23000	50000
$\mathrm{d}E_{\mathrm{T}}/\mathrm{d}\eta$ at $\eta=0$	1.8-2.0 TeV	2.3-2.6 TeV	5.2-5.8 TeV
Homogeneity volume	$5000 \; \mathrm{fm}^3$	$6200~\mathrm{fm^3}$	$11000 \; { m fm}^3$
Decoupling time	10 fm/c	11 fm/c	13 fm/c
arepsilon at $ au=1$ fm/ c	12-13 GeV/fm ³	$16-17 \text{ GeV/fm}^3$	35 – 40 GeV/fm^3

Heavy quarks

What changes expected if temperatures ~ charm mass?

≻.≶ 1.4 1.2 $d\sigma_{bF}/dy=163 \mu b$ 0.8 $d\sigma_{LE}/dy=109 \mu b$ 0.6 $d\sigma_{NE}/dy=73 \mu b$

Thermal charm

J/Psi and Upsilon Enhancement?

Small vs large systems

> Large multiplicities also in pp (or pPb)

Hydrodynamization/thermalization in small systems? Full thermalization in large systems?

Hard Probes

Huge cross section growth for harder probes

All calculations for pp collisions, computed with MCFM

- Large enhancements for larger masses
- ▶ 80x for ttbar; 40x for Z+I jet (pt>50 GeV); 20x for bbar or Z

(Boosted) Top quark

CAS, Workshop Ions at the Future Hadron Collider - January 2014

(Boosted) Top quark

Accessible Time (fm) Time vs lumi - √s = 39 TeV $\sqrt{s} = 20 \text{ TeV}$ - √s = 11 TeV $\sqrt{s} = 5 \text{ TeV}$ 1.5 Luminosity (nb⁻¹)

Small-x studies

Humongous increase in small-x reach

Improvements in nuclear PDFs and Saturation searches (also at large-x with tops or Higgs - new in HIC)

photon-photon collider

LO photon-photon to diphoton cross section

Some example thresholds in the EWK sector of the SM

LHC heavy-ion runs, past & approved future+ species choices according to ALICE 2012 LoI (could vary if required)

J.M. Jowett, LHC Performance Workshop, Chamonix, 25/1/2017

Workshop on the physics of HL-LHC, and perspectives at HE-LHC

https://indico.cern.ch/event/647676/

- Physics using HI in a 100TeV collider [arXiv:1605.01389]
- New opportunities in Quark Gluon Plasma studies
 - Temperatures close to 1GeV? Charm/bottom
 - Hydrodynamization/thermalization form small to large systems
 - Completely new (hard) probes of the medium (e.g. tops or Higgs)
- Access to the very small-x region Saturation/nPDFs
- Use HIC for new purposes e.g. light-by-light scattering

