On the Coverage of the pMSSM with Simplified Models

(preliminary results)

Ursula Laa

LPSC Grenoble & LAPTh Annecy

in collaboration with

Federico Ambrogi, Sabine Kraml, Suchita Kulkarni, Andre Lessa, Wolfgang Waltenberger

EPS-HEP Venice - July 2017

Reinterpretation of Search Results with Simplified Models

SModelS:

smodels.hephy.at

 Efficiencies / upper limits are known for given set of Simplified Models (SMS)

- "Decompose" full model into Simplified Model topologies
- Compare to upper limit on Simplified Model production cross section or visible cross section in one signal region

Upper Limit (UL) Map: directly constrains

arXiv:1312.4175

arXiv:1412.1745

arXiv:1701.06586

Decomposition into Simplified Models

ATLAS pMSSM Scan arXiv:1508.06608

- ATLAS interpreted 22 SUSY analyses in the phenomenological MSSM (pMSSM)
- Random scan in 19 free parameters, in reach of LHC8
- Sampling such that after selection similar number of points with Bino-, Wino- and Higgsino-like LSP remain
- SLHA files + exclusion information available on HepData!

How many of the excluded points can also be excluded using only reinterpretation of Simplified Model results?

Results used by ATLAS

Simplified Models results available in SModelS

	Analysis	ID	SModelS database	- "homegrown"
Inclusive	0 -lepton + 2 -6 jets + E_T^{miss}	SUSY-2013-02*	6 UL, 2 EM	
	0 -lepton + 7 - 10 jets + E_T^{miss}	SUSY-2013-04*	1 UL, 10 EM [†]	efficiency maps for
	1 -lepton + jets + E_T^{miss}	SUSY-2013-20*	1 UL from CONF-2013-089	hadronic search
	$ au(au/\ell) + ext{jets} + E_T^{ ext{miss}}$	SUSY-2013-10		produced using MadAnalysis5
	$SS/3$ -leptons + jets + E_T^{miss}	SUSY-2013-09	1 UL (+5 UL, CONF-2013-007)	and CheckMATE
	$0/1$ -lepton + $3b$ -jets + E_T^{miss}	SUSY-2013-18*	2 UL, 2 EM	
	Monojet		— (but monojet stop, see below)	
u	0-lepton stop	SUSY-2013-16*	1 UL, 1 EM	standard monojet
tio	1-lepton stop	SUSY-2013-15*	1 UL, 1 EM	search not applicable
era	2-leptons stop	SUSY-2013-19*	2 UL	in current framework
Third generation	Monojet stop	SUSY-2013-21	4 EM	iii odirone namowork
	Stop with Z boson	SUSY-2013-08	1 UL	
	$2b$ -jets + E_T^{miss}	SUSY-2013-05*	$3 \text{ UL}, 1 \text{ EM}^{\dagger}$	
	$tb + E_T^{\text{miss}}$, stop	SUSY-2014-07		
Electroweak	ℓh	SUSY-2013-23*	1 UL	
	2-leptons	SUSY-2013-11	4 UL, 4 EM [†] no Sin	nplified Model results
	2 - τ	SUSY-2013-14	- for rein	nterpretation available
	3-leptons	SUSY-2013-12	5 UL	
	4-leptons	SUSY-2013-13		
	Disappearing Track	SUSY-2013-01	n.a. in current framework	non-MET searches not
$Other \Big $	Long-lived particle		n.a. in current framework	included in SModelS
0t]	$H/A \to \tau^+ \tau^-$		n.a. in current framework	at the moment

^{* +} Fastlim EMs covering natural SUSY scenarios for Papucci et al. preliminary versions (conf notes) of ATLAS analyses arXiv:1402.0492

large number of

Additional Results used in SModelS

In addition to the ATLAS search results we also use the following CMS results

	Analysis	ID	SModelS database
	jets + E_T^{miss} , α_T	SUS-12-028	4 UL
	$3(1b$ -)jets + E_T^{miss}	SUS-12-024	2 UL, 3 EM
ark	jet multiplicity + H_T^{miss}	SUS-13-012	4 UL, 20 EM [†]
anb	$\geq 2 \text{ jets} + E_T^{\text{miss}}, M_{T2}$	SUS-13-019	8 UL
Gluino, Squark	$\geq 1b + E_T^{\text{miss}}$, Razor	SUS-13-004	5 UL
inc	$1 \text{ lepton } + \geq 2b \text{-jets} + E_T^{\text{miss}}$	SUS-13-007	3 UL, 2 EM
Hu	2 OS lept. $+ \ge 4(2b)$ jets $+ E_T^{\text{miss}}$	PAS-SUS-13-016	2 UL
\cup	$2 \text{ SS leptons} + b\text{-jets} + E_T^{\text{miss}}$	SUS-13-013	4 UL, 2 EM
	b -jets + 4 W s + E_T^{miss}	SUS-14-010	$2~\mathrm{UL}$
•	$0 \text{ lepton} + \geq 5(1b)\text{-jets} + E_T^{\text{miss}}$	PAS-SUS-13-015	2 EM
gen	$0 \text{ lepton} + \geq 6(1b\text{-})\text{jets} + E_T^{\text{miss}}$	PAS-SUS-13-023	4 UL
p.	$1 \text{ lepton} + \geq 4(1b)\text{jets} + E_T^{\text{miss}}$	SUS-13-011	4 UL, 2 EM
Third	b -jets + E_T^{miss}	PAS-SUS-13-018	1 UL
	soft leptons, few jets + E_T^{miss}	SUS-14-021	2 UL
EW	multi-leptons + E_T^{miss}	SUS-13-006	6 UL

large number of "homegrown" efficiency maps for hadronic search

similar analyses, but additional SMS topologies

[†] incl. 'home-grown' EMs produced with MadAnalysis5 or CheckMATE recasting.

Analysis in SModelS

- Run SModelS on points excluded by ATLAS SUSY searches
- Points not tested in SModelS:
 - Non-prompt decays (in particular we do not consider Wino-like LSP scenarios here)
 - Resonant production (do not consider points excluded only by heavy Higgs searches)

Results Overview

	Bino LSP	Higgsino LSP
# points tested	38,575	45,594
# points excluded by SModelS (UL)	16,957 (44%)	25,024 (55%)
# points excluded by SModelS (UL+EM)	21,151 (55%)	28,669 (63%)

Coverage as Function of Gluino Mass

Bino-like LSP

Higgsino-like LSP

Fraction of excluded points for scenarios with light gluinos:

$m_{\tilde{g}} < 600 \text{ GeV}$	80%	$m_{\tilde{g}} < 600 \text{ GeV}$	97%
$m_{\tilde{g}} < 1400 \; \mathrm{GeV}$	60%	$m_{\tilde{g}} < 1400 \; \mathrm{GeV}$	74%

-raction of points excluded by SModelS

Coverage as Function of Gluino and Neutralino Mass

(Bino-like LSP scenarios)

Asymmetric Branches vs Long Cascade Decays

(Bino-like LSP scenarios)

For points allowed by SModelS but excluded by ATLAS, what is the relative cross section in (not covered) asymmetric branches or long cascade decays?

Asymmetric branches: short decay (at most one intermediate particle in each branch) where the two branches are not equal

Long cascade decays: more than one intermediate odd particle in the cascade decay

Asymmetric Branches vs Long Cascade Decays

Asymmetric branches examples covered by

important topology but no SMS results available!

Long cascade decay examples

Gluino-Squark Production

(Bino-like LSP scenarios)

Conclusions

- Available Simplified Model results can exclude about 55-63% of pMSSM parameter points excluded by ATLAS
- Light gluinos are robustly constrained by ATLAS, but often evade Simplified Model limits
- The most important class of "missing topologies" features short but asymmetric branches
- Particularly interesting: topologies featuring gluino-squark production
- We can improve the coverage by adding efficiency maps for such missing topologies to the database
- Discussion of top and bottom squark and ew production channels will be included in upcoming publication

BACKUP

ATLAS pMSSM Scan - Details

Parameter	Min value	Max value	Note
$m_{\tilde{L}_1}(=m_{\tilde{L}_2})$	90 GeV	4 TeV	Left-handed slepton (first two gens.) mass
$m_{\tilde{e}_1}(=m_{\tilde{e}_2})$	90 GeV	4 TeV	Right-handed slepton (first two gens.) mass
$m_{\tilde{L}_3}$	90 GeV	4 TeV	Left-handed stau doublet mass
$m_{\tilde{e}_3}$	90 GeV	4 TeV	Right-handed stau mass
$m_{\tilde{O}_1}(=m_{\tilde{O}_2})$	200 GeV	4 TeV	Left-handed squark (first two gens.) mass
$m_{\tilde{u}_1} (= m_{\tilde{u}_2})$	200 GeV	4 TeV	Right-handed up-type squark (first two gens.) mass
$m_{\tilde{d}_1} (= m_{\tilde{d}_2})$	200 GeV	4 TeV	Right-handed down-type squark (first two gens.) mass
$m_{\tilde{O}_3}$	100 GeV	4 TeV	Left-handed squark (third gen.) mass
$m_{\tilde{u}_3}$	100 GeV	4 TeV	Right-handed top squark mass
$m_{ ilde{d}_3}$	100 GeV	4 TeV	Right-handed bottom squark mass
$ M_1 $	0 GeV	4 TeV	Bino mass parameter
$ M_2 $	70 GeV	4 TeV	Wino mass parameter
$ \mu $	80 GeV	4 TeV	Bilinear Higgs mass parameter
M_3	$200\mathrm{GeV}$	4 TeV	Gluino mass parameter
$ A_t $	0 GeV	8 TeV	Trilinear top coupling
$ A_b $	$0\mathrm{GeV}$	4 TeV	Trilinear bottom coupling
$ A_{ au} $	$0\mathrm{GeV}$	4 TeV	Trilinear τ lepton coupling
M_A	100 GeV	4 TeV	Pseudoscalar Higgs boson mass
$\tan \beta$	1	60	Ratio of the Higgs vacuum expectation values

Parameter	Minimum value	Maximum value
$\Delta \rho$	-0.0005	0.0017
$\Delta(g-2)_{\mu}$	-17.7×10^{-10}	43.8×10^{-10}
$BR(b \to s\gamma)$	2.69×10^{-4}	3.87×10^{-4}
$\mathrm{BR}(B_s \to \mu^+ \mu^-)$	1.6×10^{-9}	4.2×10^{-9}
$\mathrm{BR}(B^+\to\tau^+\nu_\tau)$	66×10^{-6}	161×10^{-6}
$\Omega_{{ ilde \chi}_1^0} h^2$		0.1208
$\Gamma_{\text{invisible(SUSY)}}(Z)$		2 MeV
Masses of charged sparticles	100 GeV	
$m(\tilde{\chi}_1^{\pm})$	103 GeV	
$m(\tilde{u}_{1,2}, \tilde{d}_{1,2}, \tilde{c}_{1,2}, \tilde{s}_{1,2})$	$200\mathrm{GeV}$	
m(h)	124 GeV	128 GeV

Gluino-Squark Simplified Model in ATLAS

Only valid for 8 degenerate squarks!

Only valid if $m_{\tilde{q}}=0.96m_{\tilde{g}}$

Covers 3 values of LSP mass

(from ATLAS-SUSY-2014-06)

What we would like to have for reinterpretation:

- Need efficiency maps separately for the various production channels to evaluate signal prediction for arbitrary number of light squarks
- Efficiency maps should have 3 free parameters: gluino mass, squark mass, LSP mass (e.g. 3 mass planes for interpolation)

Coverage as Function of Gluino and Neutralino Mass

(Higgsino-like LSP scenarios)

Fraction of Higgsino LSP ATLAS excluded points excluded by SModelS

exclusion from ATLAS

arXiv:1405.7875

Number of points tested (i.e. points excluded by ATLAS)

Asymmetric Branches vs Long Cascade Decays

(Higgsino-like LSP scenarios)

For points allowed by SModelS but excluded by ATLAS, what is the relative cross section in (not covered) asymmetric branches or long cascade decays?

Asymmetric branches: short decay (at most one intermediate particle in each branch) where the two branches are not equal

Long cascade decays: more than one intermediate odd particle in the cascade decay

Missing Topologies

Bino-like LSP

Higgsino-like LSP

Missing Topologies

