

Experimental limiting factors for the next generation of $\mu \rightarrow e \gamma$ searches

arXiv:1707.01805

G. Cavoto "Sapienza" Università di Roma

F. Renga, C. Voena *INFN Roma*

A. Papa Paul Scherrer Institut

E. Ripiccini *Université de Genève*

INFN

PAUL SCHERRER INSTITUT

1

Charged Lepton Flavor Violation

- Charge Lepton Flavor conservation in the Standard Model is an accidental symmetry, arising from the particle content of the model
 - cLFV almost unavoidable in most of New Physics models

SUSY predictions ~ **10**⁻¹¹ - **10**⁻¹⁵

BR($\mu \rightarrow e \gamma$) < 4.2 x 10⁻¹³ MEG @ PSI, 3 x 10⁷ μ /s

The next generation of high intensity muon beams

MuSIC Project @ RCNP

Thick production target

 π capture solenoid

 $4 \times 10^8 \mu/s$

$\mu \rightarrow e \gamma$ searches

$\mu \rightarrow e \gamma$ searches

Francesco Renga - EPS-HEP 2017, Venezia, 5-12 July 2017

Toward the next generation of $\mu \rightarrow e \gamma$ searches: Photon Reconstruction

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %) Extreme resolutions + eγ Vertex

Francesco Renga - EPS-HEP 2017, Venezia, 5-12 July 2017

Toward the next generation of $\mu \rightarrow e \gamma$ searches: Photon Reconstruction

Calorimetry

High efficiency Good resolutions

> MEG: LXe calorimeter 10% acceptance

Photon Conversion

Low efficiency (~ %)

Extreme resolutions

+ eγ Vertex

7

Photon Reconstruction: Limiting Factors

CALORIMETRY

- Photon Statistics
- Scintillator time constant
- Detector segmentation

Scintillator	$\mathbf{Density}]$	Light Yield	Decay Time
	$[g/cm^3]$	$[\mathrm{ph/keV}]$	[ns]
$LaBr_3(Ce)$	5.08	63	16
LYSO	7.1	27	41
YAP	5.35	22	26
LXe	2.89	40	45
NaI(Tl)	3.67	38	250
BGO	7.13	9	300

- LaBr₃(Ce) looks a very good candidate:
 - our simulations & tests indicate that ~ 800 keV resolution can be reached
 - extreme time resolution (~ 30 ps)
 - large acceptance
 - very expensive

PHOTON CONVERSION

Interactions in the converter (conversion probability, e⁺e⁻ energy loss and MS)

Francesco Renga - EPS-HEP 2017, Venezia, 5-12 July 2017

Toward the next generation of $\mu \rightarrow e \gamma$ searches: Positron Reconstruction

- Tracking detectors in a magnetic field are the golden candidates:
 - high efficiency
 - better resolutions w.r.t. calorimetry ($\sigma(E_e)$ down to 0.2% vs. > 1%)
- Need a very light detector in order to minimize the multiple scattering at $E_e \sim 52.8 \mbox{ MeV}$
 - e.g. MEG drift chambers gave ~ 2 x 10^{-3} X₀ over the whole positron trajectory (200 µm silicon equivalent)

Limiting Factors: Positron Reconstruction

- Positron Reconstruction is ultimately limited by Multiple Scattering
 - MS in the target & tracker-> angular resolutions
 - MS in the tracker -> momentum resolution
- Silicon trackers are not competitive with gaseous detectors in terms of resolutions (C-h. Cheng et al. arXiv: 1309.7679)
 - e.g. worse momentum resolution by a factor ~ 2
 - ...but maybe unique solution at high beam rate.

Retaille Ingle Resolution		
MS on target	2.6 / 2.8 mrad ($\theta_{e\gamma}$ / $\phi_{e\gamma}$)	
MS on gas & walls	3.3 / 3.3 mrad ($\theta_{e\gamma}$ / $\phi_{e\gamma}$)	R = 20 cm R = 30 cm R = 1 T
Traking	6.0 / 4.5 mrad ($\theta_{e\gamma}$ / $\phi_{e\gamma}$)	$R_e = 20$ cm, $R_\gamma = 50$ cm, $B = 1.1$
Alignment	< 1 mrad	< 100 μ m target alignment

Relative Angle Resolution

Positron Reconstruction at High Beam Rate

Expected aging (gain loss) in the MEG-II Drift Chamber

Would a gaseous detector be able to cope with the very high occupancy at > $10^9 \,\mu/s^2$

Photon and Positron timing

- Timing plays a crucial role in μ -> e γ searches (accidental coincidences!!!):
 - need a very good positron and photon timing
 - $\sigma(\text{Te}\gamma) \sim 80 \text{ ps in MEG-II}$
- LiBr₃(Ce) calorimeters + positron scintillating counters like in MEG can give the required performances
- For photon conversion, need to detect e⁺ or e⁻ in a **fast detector**

What about stacking multiple layers?

An active conversion layer

- Good photon timing in a detector with multiple conversion layers implies active material in the conversion layer:
 - thin, to not deteriorate the energy resolution
- Scintillating fibers have poor "timing to thickness" figures (~ 1 ns for 250 μm fibers)

FAST SILICON DETECTORS

 R&D on going for PET application (TT-PET)

M. Benoit et al., JINST 11 (2016) no. 03, P03011

Possible Scenarios

CALORIMETRY

Resolution					
Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector	
		conservative	optimistic	conservative	optimistic
$\theta_{e\gamma} / \phi_{e\gamma} \text{ [mrad]}$	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9
$T_{e\gamma}$ [ps]			30		
E_e [keV]			100		
E_{γ} [keV]			850		
Efficiency [%]			42% (70%	% γ acceptanc	e)

PHOTON CONVERSION

Resolution					
Variable	w/o vtx detector	w/ TPC vtx detector		w/ silicon vtx detector	
		conservative	optimistic	conservative	optimistic
$\theta_{e\gamma} / \phi_{e\gamma}$ [mrad]	7.3 / 6.2	6.1 / 4.8	3.5 / 3.8	8.0/7.4	6.3 / 6.9
$T_{e\gamma}$ [ps]			50		
E_e [keV]			100		
E_{γ} [keV]			320		
Efficiency [%]			1.2 (1 LA	YER, 0.05 X ₀)	

Expected Sensitivity

A few 10^{-15} seems to be within reach for a 3-year run at ~ $10^8 \mu$ /s with calorimetry (*expensive*) or ~ $10^9 \mu$ /s with conversion (*cheap*)

Fully exploiting 10¹⁰ µ/s and breaking the 10⁻¹⁵ wall seem to require a *novel experimental concept*