

Status of the Advanced LIGO and Advanced Virgo detectors EPS-HEP – Venezia, July 7th 2017

Nicolas Arnaud (<u>narnaud@lal.in2p3.fr</u>)

Laboratoire de l'Accélérateur Linéaire (CNRS/IN2P3 & Université Paris-Sud) European Gravitational Observatory (Consortium, CNRS & INFN)

On behalf of the LIGO Scientific Collaboration and of the VIRGO Collaboration

 $\underset{\text{Gravitational}}{\text{HOII}} EGO^{\text{European}}_{\text{Gravitational}}$

Outline

- Introduction
 - Gravitational waves
 - Giant interferometric gravitational-wave detectors
 - A network of detectors
- Looking back: a quick summary of Advanced LIGO Observation Run 1 (O1)
- Advanced LIGO Observation Run 2 (O2)
 - **GEO600**
- Advanced Virgo commissioning
- Looking at the future
 - Virgo's goal is to join O2
 - O2/O3 break
 - O3 and beyond

Gravitational Waves @ EPS-HEP 2017

• This parallel session

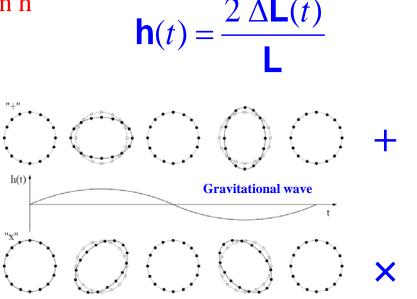
	Status of the Advanced LIGO and Advanced Virgo Detectors	Nicolas Arhaud
	Room Martinelli, Palazzo del Casinò	16:30 - 16:45
	Results of transient GW searches with Advanced LIGO	Ed Porter
	Room Martinelli, Palazzo del Casinò	16:45 - 17:00
17:00	Testing the strong-field dynamics of general relativity with gravitational wave signals from compact binary coalescences	Archisman Ghosh
	Astrophysical and cosmological results from compact binary coalescences	Dr. Vivien Raymond
	Room Martinelli, Palazzo del Casinò	17:15 - 17:30
	GW transient searches to probe Neutron star physics	Dr. Claudia Lazzaro
	Room Martinelli, Palazzo del Casinò	17:30 - 17:45
	Low latency gravitational wave searches for prompt multimessenger followups	Marco Drago
	Room Martinelli, Palazzo del Casinò	17:45 - 18:00
18:00	Stochastic GW searches and Cosmology with GWs	Giancarlo Cella
	Room Martinelli, Palazzo del Casinò	18:00 - 18:15
	The search for continuous gravitational waves with LIGO and Virgo detectors	Dr. Cristiano Palomba
	Room Martinelli, Palazzo del Casinò	18:15 - 18:30
	Extending the gravitational waves searches for black holes with intermediate masses and residual eccentricity at merger	Shubhanshu Tiwari

Data analysis

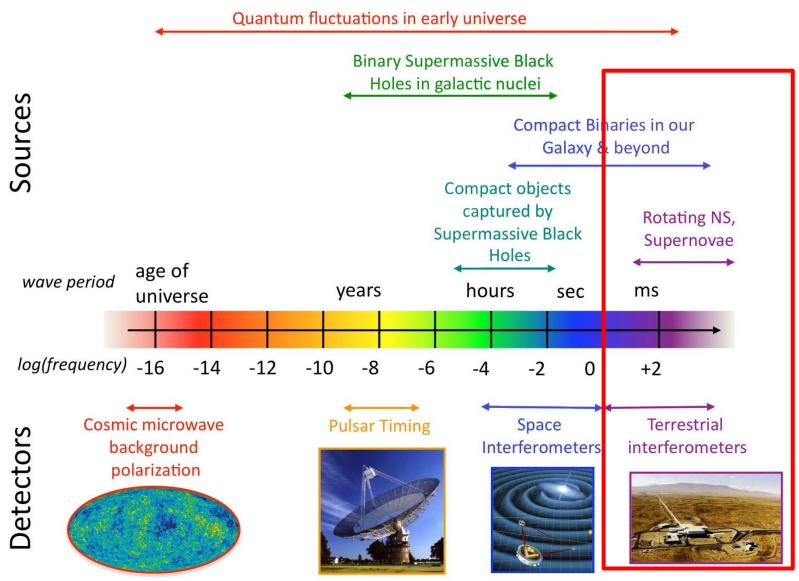
• Plenary talk on Monday afternoon

 Gravitational Wave observations: status and perspectives
 Michele Punturo

 Sala Grande, Palazzo del Cinema
 14:30 - 15:00


Gravitational waves in a nutshell

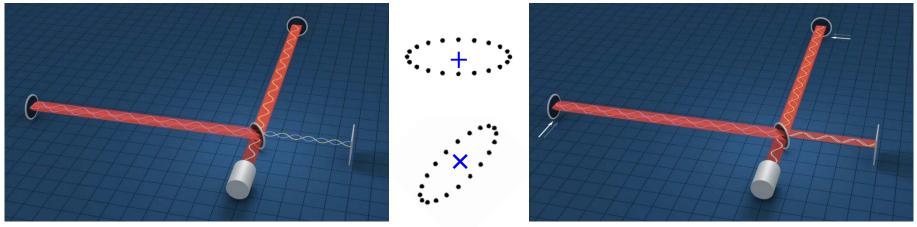
- Gravitational waves (GW)
 - Ripples in the fabric of the spacetime
 - Emitted by accelerated masses
 - Propagate at the speed of light
 - Time-varying quadrupolar moment of the mass distribution required


 $P = \frac{c^5}{G} \epsilon^2 \left(\frac{v}{c}\right)^6 \left(\frac{R_s}{R}\right)^2$ $R_s = \frac{2GM}{c^2}$

R_S: Schwartzschild radius 3 km for the Sun

- \rightarrow No emission if spherical or cylindrical symmetry
- One of the first predictions of General Relativity (GR) Einstein 1916
- GW characterized by its dimensionless strain h
 - $h \propto 1 / (distance from the source)$
- Transverse with two polarizations
 - * + * and $* \times *$
 - Effect on a ring of test masses (free-falling)
 - \rightarrow Length variations in \perp directions

Gravitational-wave spectrum

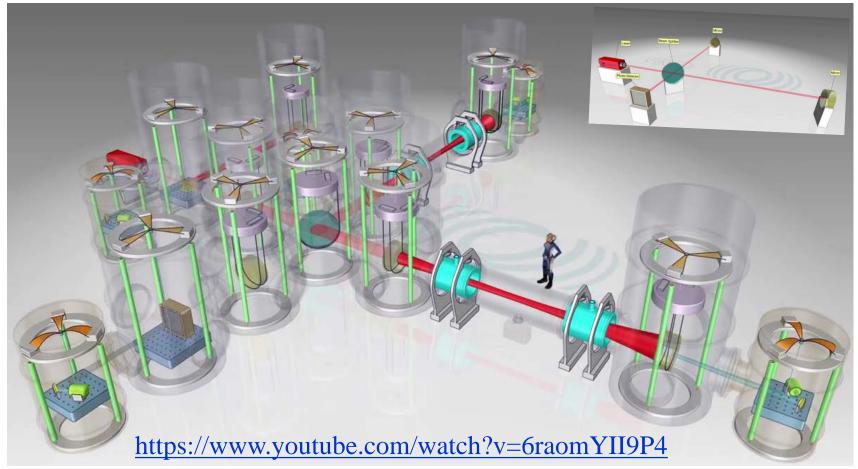


Earth-based giant interferometers: LIGO, Virgo ...

Gravitational-wave interferometric detection

• Michelson interferometer

- \rightarrow Compare light travel time in the arms
- Best sensitivity around dark fringe

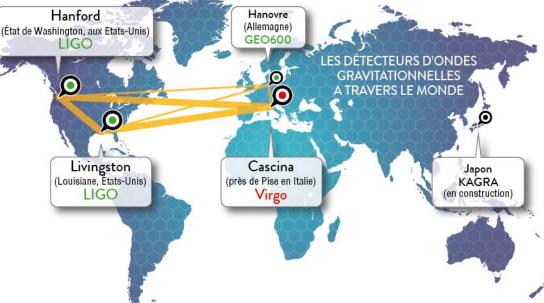


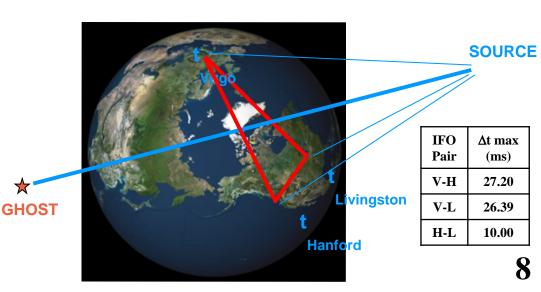
GW effect vastly exagerated

- Incident GW
 - \rightarrow Optical path changes
 - \rightarrow Output power variation
- Snapshots from https://www.ligo.caltech.edu/video/ligo20160211v6

From the concept to a real detector

• Example of Advanced Virgo – design similar for Advanced LIGO



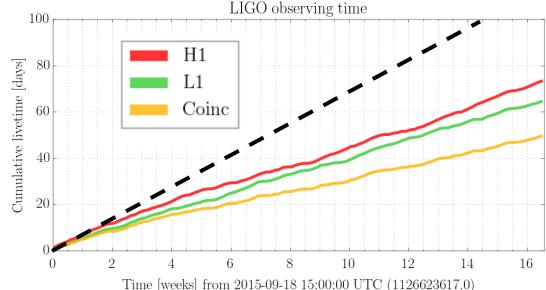

- More complex optical configuration
- Suspended mirrors and benches
- Ultra-high vacuum

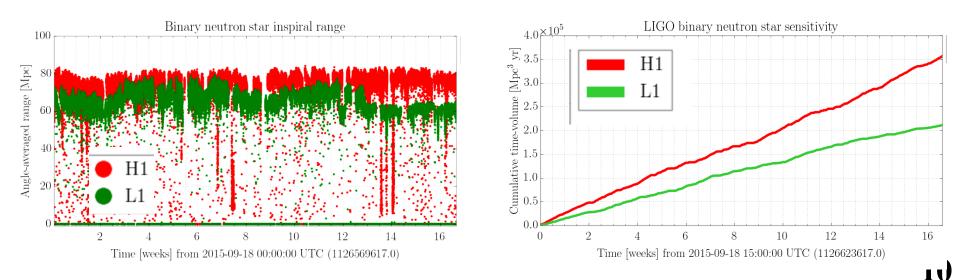
- Active control
- Noise mitigation
- Km-long arms

A worldwide network of detectors

- Single interferometer unable to detect GW alone
 - Difficult to separate a signal from noise confidently
- → Need to use a network of interferometers
- Agreements (MOUs) between the different projects
 - Virgo/LIGO: 2007
 - Share data, common analysis, publish together
- Non-directional detectors
 → non-uniform response in the sky
- Threefold detection: reconstruct source location in the sky

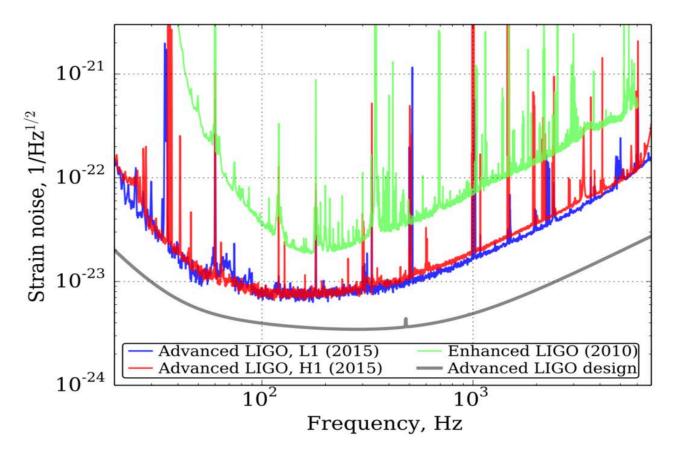
A worldwide network of detectors





Advanced LIGO Observation Run 1

- September $2015 \rightarrow$ January 2016
 - 2 confirmed detections: GW150914 & GW151226
 - I candidate: LVT151012
- → All 3 stellar mass binary black hole mergers
 - No other source detected



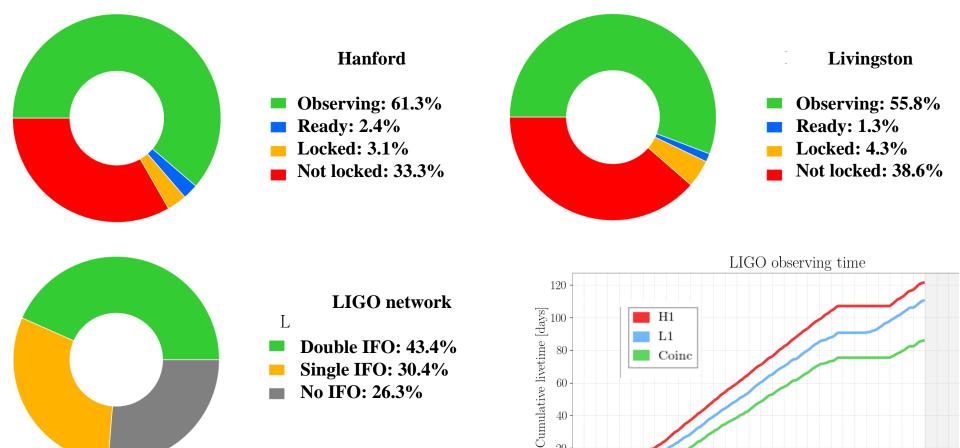
• 94% of coincidence data passed data quality cuts for physics analysis

Advanced LIGO Observation Run 1

• Typical sensitivity curves

- With respect to the 1^{rst} generation LIGO detectors
 - Factor 3 improvement broadband
 - 2 orders of magnitude gain around 40 Hz
- Room for improvement to reach the design sensitivity
 - By the end of the decade

Advanced LIGO O1/O2 commissioning break


- 10 months: January \rightarrow October 2016
- Threefold goals
 - Reduce noise
 - Improve duty cycle
 - Improve data quality
- Main activities
 - Hanford: laser power increase
 - Livingston: mitigation of scattering noise, duty cycle
- \rightarrow Successful activities but limited performance improvement overall
- Engineering run in November 2016
- Official start of « Observation Run 2 » (O2) on November 30th 2016
- Ongoing until end of August 2017

Advanced LIGO Observation Run 2

- From http://www.ligo.org/news.php
 - June 2017 update on LIGO's second observing run
- 1 June 2017 The second Advanced LIGO run began on November 30, 2016. It was suspended on May 8, 2017 for some in-vacuum commissioning activities and is resuming at the end of May. Prior to the May break, approximately 74 days of Hanford-Livingston coincident science data have been collected. The average reach of the LIGO network for binary merger events has been around 70 Mpc for 1.4+1.4 Msun, 300 Mpc for 10+10 Msun and 700 Mpc for 30+30 Msun mergers, with relative variations in time of the order of 10%.
- Prior to the May commissioning break, 7 triggers, identified by online analysis using a loose false-alarm-rate threshold of one per month, have been identified and shared with astronomers who have signed memoranda of understanding with LIGO and Virgo for electromagnetic followup. A thorough investigation of the data and offline analysis are in progress; results will be shared when available.
 - GW170104 is one of these 7 triggers

Advanced LIGO Observation Run 2 (cont'd)

- Duty cycles
 - Single interferometers and coincidence

20

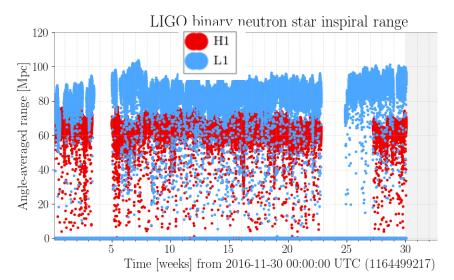
15

20

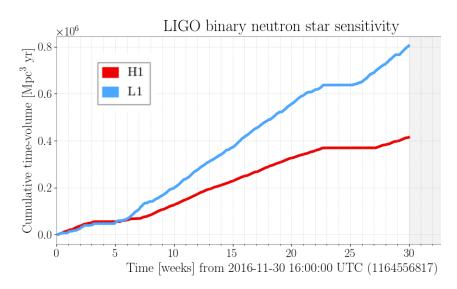
Time [weeks] from 2016-11-30 16:00:00 UTC (1164556817)

25

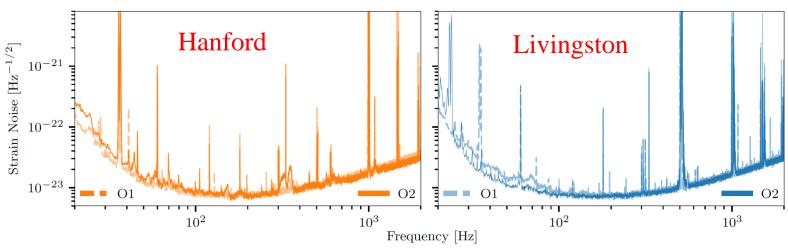
30


10

5


 \rightarrow Values very similar to O1

Advanced LIGO Observation Run 2 (cont'd)


• Range

• Volume

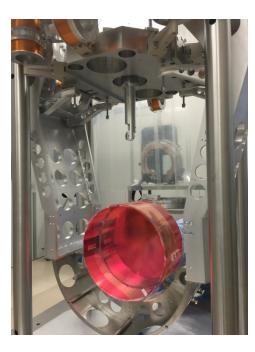
• Sensitivity

GEO

- Detector built in Germany near Hannover
 - Arms 600 m-long
 - \rightarrow Reduced sensitivity
 - Test and R&D facility

 \rightarrow The GEO collaboration is a member of the LIGO Scientific Collaboration

• Astrowatch mode

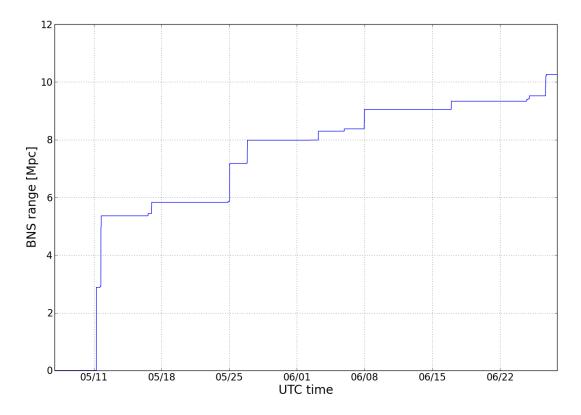

 \rightarrow Don't miss a large / nearby GW event

- Instrument science activities require a working detector
 - Science mode during nights and weekends
 - Goal: duty cycle > 70%

Advanced Virgo commissioning

- August 2016: Full interferometer in vacuum for the first time
 → Real start of commissioning phase
- A brand new detector
 - Modification of the optical cavity parameters
 - Mirrors bigger and twice heavier
 - Benches suspended and under vacuum

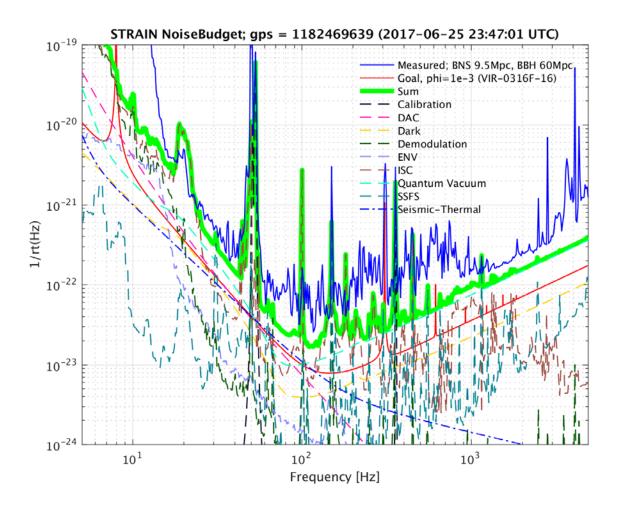
- Hardware/software upgrades
- Monolithic suspensions
- Cryotraps


Advanced Virgo commissioning

- Long-standing issue involving the monolithic (fused silica) mirror suspensions
 - All monolithic suspensions installed under vacuum broke one after the other
 - \rightarrow Initially w/o any clear pattern
 - Fall: decision taken to move back to steel wires
 - \rightarrow Impact on target sensitivity for O2 not a limiting factor so far
 - Significant collaboration-wide effort to understand the source of the problem
 - → Vacuum contamination by dust particles accelerated during venting operation and hitting the glass wires strong but fragile
 - \rightarrow Solution for O3:
 - Upgrade of the vacuum system to get rid of contamination problem: new piping, removal of scroll pumps
 - Additional safety: fiber guards added on the payload
- Milestones achieved in the following weeks

 \rightarrow First 1-hour long control of the full detector in March 2017

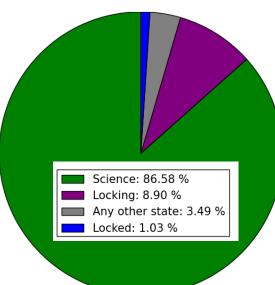
Advanced Virgo commissioning (cont'd)


• Evolution of the best binary neutron star (BNS) range [in Mpc]

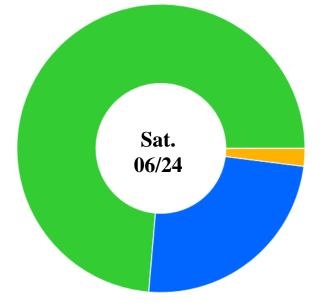
- Took less than 4 months to break the 10 Mpc level about 5 years for 1^{rst} generation
- Step-wise function
 - Progress is not smooth!
 - \rightarrow Noise hunting phase

Advanced Virgo commissioning (cont'd)

- Noise budget
 - Model all identified sources of noise
 - Compare noise prediction with measurements in the whole frequency range



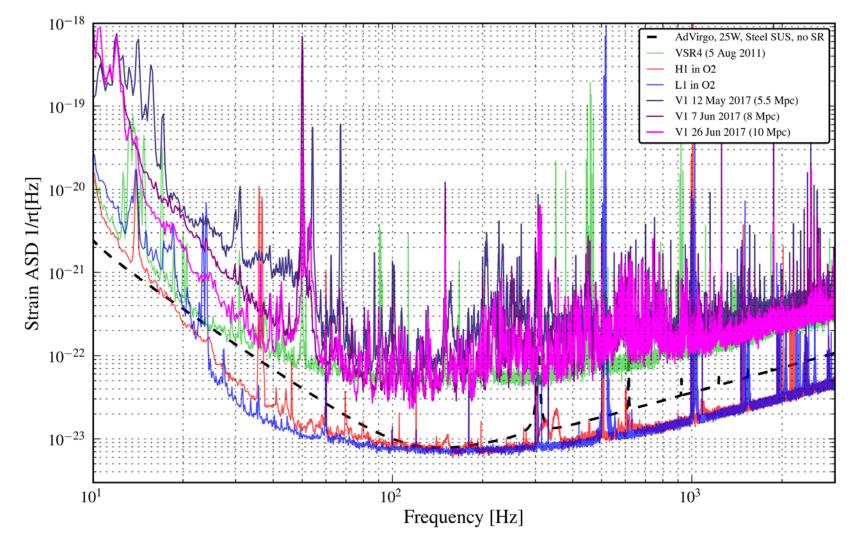
Measurement


Goal

Towards a 3-advanced detector network

- Common engineering runs with LIGO in May and June
 - During weekends
 - \rightarrow Virgo commissioning in between
 - Maximize data taking efficiency
 - \rightarrow Only fix problems if any
 - \rightarrow High duty cycle after first few hours of tuning
 - Test alert system in case of GW candidate detection
 - Test data analysis pipelines

Advanced Virgo Sat. 06/24 + Sun. 06/25

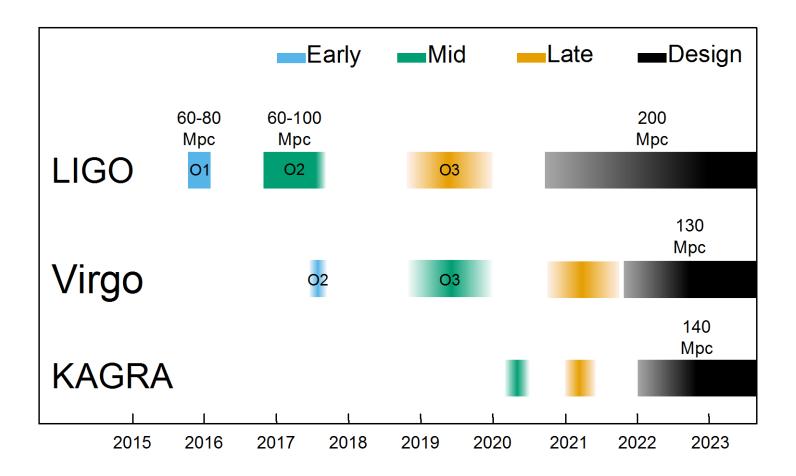


LIGO-Virgo network duty factor Triple interferometer [73.7%] Double interferometer [24.4%]

- Single interferometer [2.0%]
- No interferometer [0.0%]

Towards a 3-advanced detector network

• Sensitivity curves



Upgrades between O2 and O3

- Duration: about a calendar year
 - Start right after O2
 - Could be extended if needed
 - \rightarrow Significant improvement of all detector performances is expected
- LIGO
 - Further reduce scattered light
 - Increase laser power
 - Squeezing activities
- Virgo
 - Re-install monolithic (fused silica) suspensions
 - Install squeezer provided by GEO (Albert Einstein Institute)
 - Increase laser power
- → For both LIGO and Virgo, all upgrades should be completed early enough to allow a significant commissioning phase before starting O3
 - For Virgo, this means delaying the addition of an additional mirror (« Signal Recycling ») after O3

O3 and beyond

- Observing scenario
 - Including KAGRA
 - \rightarrow Being built at Kamiokande (Japan)

Outlook

- LIGO
 - O1: a successful data taking period
 - O2: similar performances
- Virgo
 - Detector fully controlled
 - High duty cycle
 - Sensitivity not good enough yet
 - \rightarrow « Noise hunting » activities in progress
 - Goal is to join O2 asap
- Long break between O2 and O3 for all detectors
 - To improve significantly their sensitivities
- Rate of merging black hole binary system still poorly known
 - Three events only!
- KAGRA (Japan) to join the network by 2020
- Possibly a 5th detector (INDIGO, India) to be installed in about a decade or so
- ESA (/NASA) LISA mission on the right track for a launch in 2034

When is Virgo going to join O2?

- Virgo targets a sensitivity in excess of 20 Mpc in terms of BNS range
 Twice the current range
- Several important commissioning actions planned for the next weeks
 Will likely lead to a sensitivity improvement
- \rightarrow Virgo is in close and continuous discussion with LIGO

