Searches for SUSY via strong production in fully hadronic final states at CMS

Myriam Schönenberger ETH Zürich

for the CMS collaboration

EPS-HEP, Venice 6 July 2017

Why fully hadronic?

Largest cross section for **strong production**, **gluinos** & **squarks**, of SUSY

Largest branching ratio to jets

Fully hadronic searches of strongly produced SUSY

→ discovery channel at energy frontier

Four fully hadronic searches at CMS

H _T miss	SUS-16-033 arxiv1704.07781	35.9 fb ⁻¹	Focus on these latest
M_{T2}	SUS-16-036 arxiv1705.04650	35.9 fb ⁻¹	results in this talk

Razor	SUS-16-016	12.9 fb ⁻¹
α_	SUS-15-004	2.3 fb ⁻¹

Plus many other SUSY searches at CMS that will be presented:

- 1+ lepton (C. Schomakers)
- 3rd gen. squark production (I. Suarez)
- EW produced SUSY (M. Liu)
- Compressed and cascades with Higgs (C. Heidegger)
- Final states with photons (M. Weinberg)

Strategy for fully hadronic inclusive searches

- Lepton veto
- Large ME_⊤ from neutralinos
- Many jets
- A lot of hadronic activity
- Sensitivity to very different signals through binning in jet & b-jet multiplicity
- Binning in H_T for energy scale sensitivity
- Discovery variables
 H₋^{miss} & M₋₂

$$H_T = \sum_{jets} |\vec{p_T}|$$

$$H_T^{miss} = |-\sum_{jets} \vec{p_T}|$$

$$M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$$

Main backgrounds

QCD multi-jet:

- Mis-measurement of a jet leads to imbalanced event
 - → instrumental ME_T
- W-jets & ttbar (Lost lepton):
 - ME_T from neutrino from leptonic W decay
 - Charged lepton not caught by lepton veto because of acceptance, reconstruction or isolation
- Z_{νν}+jets:
 - ME_T from the two neutrinos

QCD Estimate: Rebalance and Smear

depends on $\eta \& p_{\scriptscriptstyle T}$ of jets

200

400

600

800

1000

H_T^{miss} [Gev]

1200

Lost Lepton estimate

Single lepton (e/µ) control region

0 leptonsignal region

- Charged lepton not seen because of
 - Acceptance of detector
 - Reconstruction/ID
 - Non-isolation
- Suppress with efficient lepton veto

Special estimate of hadronic Tau decays for $H_{\scriptscriptstyle\mathsf{T}}^{\scriptscriptstyle\mathsf{miss}}$ analysis

- Single μ control region in data
- Smear μ p_T with τ_h response function
- Recompute event kinematics

Z → vv Estimate

- γ+jets
- High stats control region
- Large systematic uncertainties due to fragmentation photons & theoretical uncertainy on Z/γ ratio

- $Z \rightarrow II$
- Lower stats, now possible with 40 fb⁻¹
- Lower uncertainties (same process)
- Account for purity due to Top from eµ data control region

Selected results

Good agreement with the standard model

Aggregate signal regions & covariance matrix for easier reinterpretation

M_{T2} @12.9 fb⁻¹

Signal	Expected limit [fb]	Expected limit [fb] (best
	(full analysis)	aggregated region)
$\mathrm{pp} o \widetilde{\mathrm{g}}\widetilde{\mathrm{g}},\widetilde{\mathrm{g}} o \mathrm{b}\overline{\mathrm{b}}\widetilde{\chi}_1^0$	1.80	3.84
$(m_{\widetilde{g}} = 1700 \text{GeV}, m_{\widetilde{\chi}_1^0} = 0 \text{GeV})$		
$pp o \widetilde{g}\widetilde{g}, \widetilde{g} o b\overline{b}\widetilde{\chi}_1^0$	234	498
$(m_{\tilde{g}} = 1000 \text{GeV}, m_{\tilde{\chi}_1^0} = 950 \text{GeV})$		

Full analysis give significantly better limits than the best aggregate region

Exclusion Limits – Gluino production

- Similar reach for both analyses
- Hadronic analyses have similar reach as leptonic channels
- Extended reach up to about 2 TeV along gluino mass

Exclusion Limits - Direct squark production

- Similar reach for both analyses
- Have similar reach as leptonic channels for stop production
- Extended reach by to about 1TeV along squark mass

Conclusions

- Showed results of 2 fully hadronic inclusive searches for SUSY with 35.9 fb⁻¹ collected by the CMS detector
- Probed the direct squark and gluino production at the energy frontier
- No significant excess over background predictions:
 - → Exclude masses of up to about 2 TeV for gluinos and 1 TeV for squarks with two independent approaches

BACK UP

The CMS detector

The M_{T2} Variable

M_{T2} is a generalized ME_T like variable for decays with 2 unobserved particles

$$M_{T2}(m_c) = \min_{\vec{p}_T^{c(1)} + \vec{p}_T^{c(2)} = \vec{p}_T^{miss}} [\max(M_T^{(1)}, M_T^{(2)})]$$

 Split visible part of event into 2 hemispheres (pseudojets) for calculation of M_{T2}

Approximative formula: $(M_{T2})^2 \sim p_T(J1) \cdot p_T(J2) \cdot (1 + \cos \phi_{12})$

QCD background estimate via delta Phi

• Invert $\Delta \varphi(ME_{\tau}, jets)$ cut

$$r_{\phi} = \frac{N(\Delta \phi_{min}(jets, E_T^{miss}) > 0.3)}{N(\Delta \phi_{min}(jets, E_T^{miss}) < 0.3)}$$

- Fit r_{ϕ} at low M_{T2} & extrapolate to signal region inclusively in each H_{T} region
 - → Then split among N_j/N_b with data based transfer factors
- N_{CR} coming from signal triggers

18

$$N_{QCD}^{SR} = N^{CR}(H_T, M_{T2}) \cdot r_{\phi}(M_{T2}) \cdot f_{i}(H_T) \cdot r_{b}(N_i)$$

