

Search for supersymmetry in events with photons at CMS

Marc Weinberg (Carnegie Mellon University)

Introduction

- ☑ Discover new boson consistent with Higgs
 - ☑Confirm boson is Higgs
- ☐ Hierarchy problem: Why is Higgs so much lighter than apparent unification scale (Planck mass)?
- ☐ Gauge coupling unification
- ☐ Dark matter: Stable, massive, weakly interacting
- SUSY appears as potential answer to each question
 - Gauge mediation one of the simplest, most robust breaking mechanisms
 - Gravitino LSP and (usually) photons from bino-like NLSP

Razor $H \rightarrow \gamma \gamma$ (SUS-16-045)

- Higgs bosons can result from a wide range of SUSY decays
 - Most models also involve large hadronic energy (from strongly produced SUSY particles) and missing energy (from stable LSPs)

• Many possible scenarios: Motivates an inclusive search for anomalous Higgs production at high H_T , MET \tilde{t}_T

• $H \rightarrow \gamma \gamma$ is among most accessible channels due to suppression of backgrounds

Event categorization

- Select Higgs candidate
 - 2 high-pT barrel photons with $103 < M_{vv} < 160 \text{ GeV}$
 - $M_{\gamma\gamma}$ used as discriminant / background estimate
- Compute razor variables
 - At least 1 high-p_⊤ jet for razor variables
 - Compute jet hemispheres j1 and j2

$$M_R \equiv \sqrt{(p^{j1} + p^{j2})^2 - (p_z^{j1} + p_z^{j2})^2}, R^2 \equiv \left(\frac{M_T^R}{M_R}\right)^2$$

- Categorize events to maximize signal-tobackground discrimination
 - SUSY signals often involve additional Higgs or Z
 - High resolution category for generic enhancement of Higgs over non-resonant background

LowRes

Limits on sbottom model

Improvement in sensitivity over previous result

 Strong sensitivity even at low neutralino masses

Photon + p_T^{miss} (SUS-16-046)

- Gauge mediated supersymmetry breaking (GMSB)
 - Gravitino \tilde{G} lightest SUSY particle (LSP), stable
 - Lightest neutralino $\tilde{\chi}_1^0$ next-to-lightest SUSY particle (NLSP), prompt decay
 - Bino-like neutralino decays with high probability to $\gamma + \tilde{G}$
- Properties of the final states:
 - At least one high-p_T photon
 - Require $p_T^{\gamma} > 180 \text{ GeV}$
 - Significant missing transverse momentum p_T^{miss} from stable LSP
 - $p_T^{miss} > 300$ GeV, $M_T(\gamma, p_T^{miss}) > 300$ GeV
 - Hadronic jet activity H_T depends on production mechanism
 - No requirements on leptons, jets, or H_T

Signal region

- Divided into 4 exclusive regions based on S_T^γ
- Use simplified SUSY models
 - TChiWg: Ewk production, assumes massdegenerate $\tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm$ co-NLSPs
 - T5Wg: Gluino production to ewkinos
- Signal shown stacked with background contributions
 - Take TChiWG $M_{\widetilde{\chi}}=700~{
 m GeV}$
 - Take T5Wg $M_{\widetilde{g}}=1750$ GeV, $M_{\widetilde{\chi}}=1700$ GeV
- Signal contamination accounted for in limit
 - Negligible in all non-excluded phase space

Interpretation (strong production models)

T5gg and T5Wg simplified SUSY models

• T5Wg cross section assumes massdegenerate $\tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm}$ co-NLSPs

- Can exclude gluino masses up to 2.1 and 2.0 TeV respectively
 - Weaker limit at low neutralino mass

Photon + EMH_T + p_T^{miss} (SUS-16-047)

- Gauge mediated SUSY
 - Gravitino \widetilde{G} LSP, stable
 - Lightest neutralino $\tilde{\chi}_1^0$ NLSP, prompt decay
 - Allow chargino $\tilde{\chi}_1^{\pm}$ co-NLSP
 - Assume strong (squark or gluino) production
- Properties of the final states:
 - At least one high-p_T, central photon
 - Require $p_T^{\gamma} > 100 \text{ GeV}$
 - Significant missing transverse momentum p_T^{miss} from stable LSP
 - $p_T^{miss} > 350 \text{ GeV}$
 - Significant transverse energy EMH_T from jets and photon
 - $EMH_T = \sum_i p_T^{ji} + p_T^{\gamma} > 700 \text{ GeV}$

Signal region

- Divided into exclusive regions based on EMH $_{\mathsf{T}}$ and p_T^{miss}
- Signal shown stacked with background contributions

• See definite (local) excess > in next-to-last bins

1 next-to-last bins
 2.3σ and 2.2σ respectively

Interpretation for strong production models

- Same T5gg and T5Wg simplified models as in previous analysis
- Similar expected and observed limits at high gaugino masses
 - Effect dominated by agreement in bin
- Less sensitivity in T5Wg for $M_{\widetilde{\chi}} \approx M_W$ due to on-shell W production

Conclusions

- No evidence of SUSY in photon channels yet
 - Interesting hints in some regions, at local 2σ level
- SUSY provides excellent framework for studying a large variety of final states across range of mass hierarchies
- Strong (and growing) program of photon-inspired SUSY searches at CMS
 - Many powerful searches in photon final states covering very large phase space
 - Higher luminosities could lead to new innovations
 - Final states with photons and b jets
 - Long-lived scenarios
 - Stealth scenarios
 - •

Backup

SUS-16-045 results: High-p_T region

- Single exponential fit to non-resonant background
- Double-sided crystal ball fitted to MC simulation used for both SM Higgs and SUSY signal
- 35.9 fb⁻¹: High- p_T , $M_R > 600$ GeV, $R^2 > 0.025$
- $N_S = 4.8 \pm 6.3 \rightarrow 0.7 \sigma$

Background-only fit (includes SM Higgs)

Signal + background fit

SUS-16-045: Significance of all results Physics

• Most deviations within 1σ

SUS-16-046: Determination of $e \rightarrow \gamma$ background

- Data driven estimate of $e \rightarrow \gamma$ fake rate
 - Require pixel seed in photon selection
 - Use tag and probe to determine probability e reconstructed as γ
 - Scale distributions by resulting factor $f_{e o \gamma}$
 - Measured in both simulation and data to obtain systematic uncertainty

SUS-16-046: Fit of Vγ and γ+jets

- Simultaneous fit from MC simulation of $V\gamma$ (dominant) and γ + jets to data in control region
 - Template fit using $\Delta \varphi \left(p_T^{miss} \right)$, nearest jet or γ
- Subdominant backgrounds fixed

SUS-16-046: Plots in control and VR (S_T^{γ} < 600 GeV)

- Control region (CR) has $100 < p_T^{miss} < 300$ GeV and $100 < M_T(\gamma, p_T^{miss}) < 300$ GeV
- Validation region (VR) has same requirements as signal region, but with $S_T^{\gamma} < 600 \text{ GeV}$
 - $S_T^{\gamma} = \sum_i p_T(\gamma_i) + p_T^{miss}$
 - $V\gamma$ and γ + jets from simultaneous fit to data in control region
 - Fake rate of e → γ from data via tag and probe

SUS-16-046: Interpretation (electroweak models)

- TChiWg simplified SUSY model
 - Cross section assumes mass-degenerate $\tilde{\chi}_1^0$, $\tilde{\chi}_1^\pm$ co-NLSPs

 Exclude NLSP masses below 750 GeV at 95% CL

SUS-16-046: Interpretation (strong production models)

T6gg and T6Wg simplified SUSY models

• T6Wg cross section assumes massdegenerate $\tilde{\chi}_1^0$, $\tilde{\chi}_1^{\pm}$ co-NLSPs \tilde{q} $\tilde{\chi}_{1}^{0}$ \tilde{q} $\tilde{\chi}_{1}^{0}$ \tilde{q} \tilde{q} $\tilde{\chi}_{1}^{0}$ \tilde{q}

- Can exclude squark masses up to 1750 and 1660 GeV respectively
 - Weaker than gluino limits due to lower production cross section

SUS-16-047: Closure tests

- From γ + jets and H_T-binned QCD simulation
- Points from direct simulation (including non-prompt QCD photons)
- Prediction from shifted jet selection applied to simulation
 - Find very good agreement

SUS-16-047: e $\rightarrow \gamma$ closure on simulation

Similar to previous analysis

Determine an electron-to-photon misreconstruction probability via tag and

probe

• Estimate background by scaling control region with electrons by this rate

 Method applied to simulation to show closure 10⁻²

SUS-16-047: Endcap data

- Control region: Require lead photon to be reconstructed in endcap
- Signal stacked with background prediction
 - No signal contamination, as heavy particles decay centrally
- Predictions agree with data within uncertainty

SUS-16-047: Interpretation for strong production models

- Same T6gg and T6Wg simplified models as in previous analysis
- Similar expected and observed limits at high gaugino masses
 - Effect dominated by agreement in bin
- Less sensitivity in T5Wg for $M_{\widetilde{\chi}} \approx M_W$ due to on-shell W production

