

Searches for New Heavy Resonances in Final States with Leptons and Photons

7th July 2017 EPS 2017

Benjamin Radburn-Smith on behalf of the CMS Collaboration

Seoul National University

Introduction

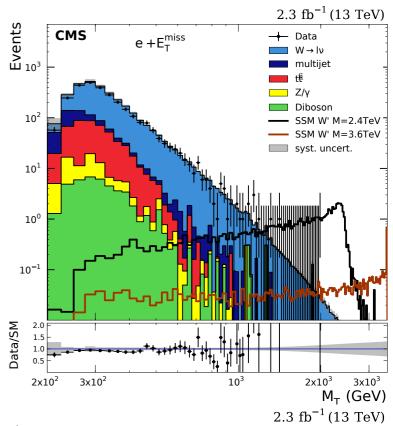
- The use of leptonic/photonic resonances has been a critical tool in searching for signatures of physics
 - The W&Z boson as well as Higgs boson were all discovered using these signatures
- Many models beyond the Standard Model (BSM) predict resonances at the TeV energy scale
 - These include spin-0, spin-1 and spin-2 resonances produced in such models as the Sequential Standard Model (SSM) with SM-like couplings, Grand Unified Theories (GUT) with E₆ gauge group, Randall–Sundrum (RS) model of extra dimensions leading to Kaluza–Klein graviton (G_{KK}) excitations
 - We search for a clear bump on-top of a SM background

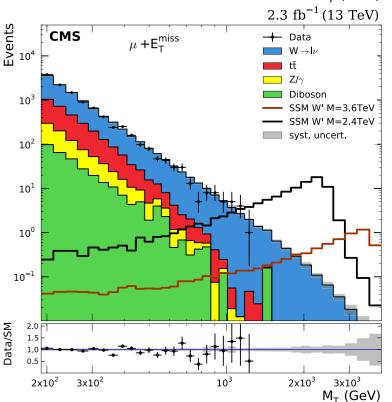
Introduction

 I will briefly present the following results which are based from different datasets collected by the CMS experiment including those from 2016

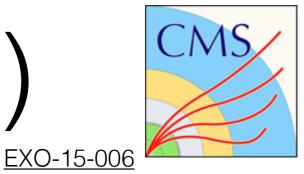
#	Analysis	Integrated Luminosity	Code
1	W′→ℓν (ℓ=e/μ)	2.3 fb ⁻¹ (2015)	EXO-15-006
2	W'→ℓν (ℓ=τ)	2.3 fb ⁻¹ (2015)	EXO-16-006
3	Z'→ℓℓ (ℓ=e/μ)	13 fb ⁻¹ (2016)	EXO-16-031
4	$Z' \rightarrow \ell \ell \ (\ell = T)$	2.2 fb ⁻¹ (2015)	EXO-16-008
5	Х→еµ	2.7 fb ⁻¹ (2016)	EXO-16-001
6	X→Zγ	36 fb ⁻¹ (2016)	EXO-17-005
7	Χ→γγ	12.9 fb ⁻¹ (2016) + 3.3 fb ⁻¹ (2015) + 19.7 fb ⁻¹ (Run I)	EXO-16-027
	q*→γJ	<u>See Giorgia's Talk</u>	EXO-16-015

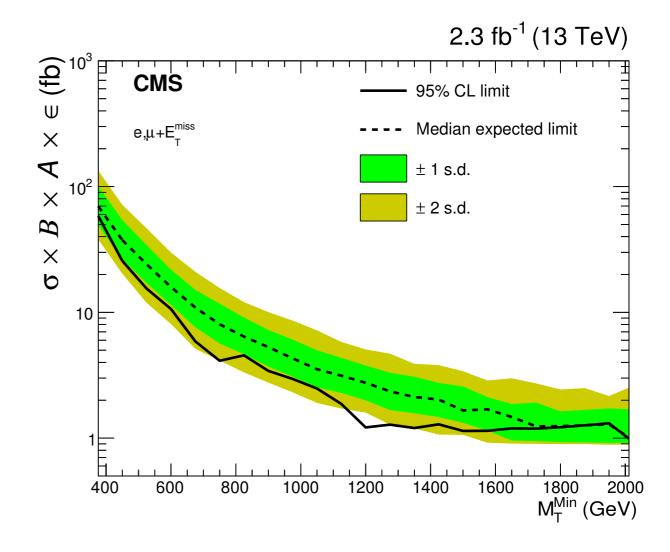
Full list of CMS Exotica results are available <u>here</u>




1. W' $\rightarrow \ell v (\ell = e/\mu)$

EXO-15-006

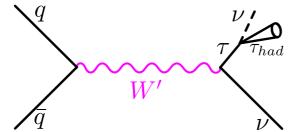

- Searching for a highly energetic electron or muon along with missing energy using 2.3 fb⁻¹ (2015)
- Uses the discriminating variable: transverse mass, $M_{\rm T} = \sqrt{2p_{\rm T}^\ell E_{\rm T}^{\rm miss}(1-\cos[\Delta\phi(\vec{p}_{\rm T}^\ell,\vec{p}_{\rm T}^{\rm miss})])}$
- Dominant and irreducible background is W→ℓv
 - Pythia 8.2 MC generated at LO, LO→NNLO mass-dependant K factor used (FEWZ 3.1)
- pT>130 (53) GeV for electron (muon)
 - Events with additional electrons (muons) with pT> 35 (25) GeV are excluded



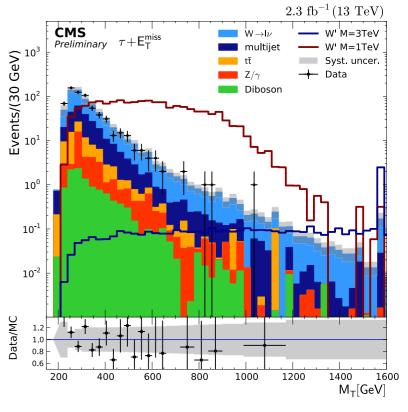
1. W' $\rightarrow \ell v (\ell = e/\mu)$

 With no observed excess with respect to the SM, lower limits can be placed on the mass of the W'

- m(W'_{SSM})>4.1 TeV
- Model independent cross section × branching fraction limits as a function of the lower M_T threshold are also produced



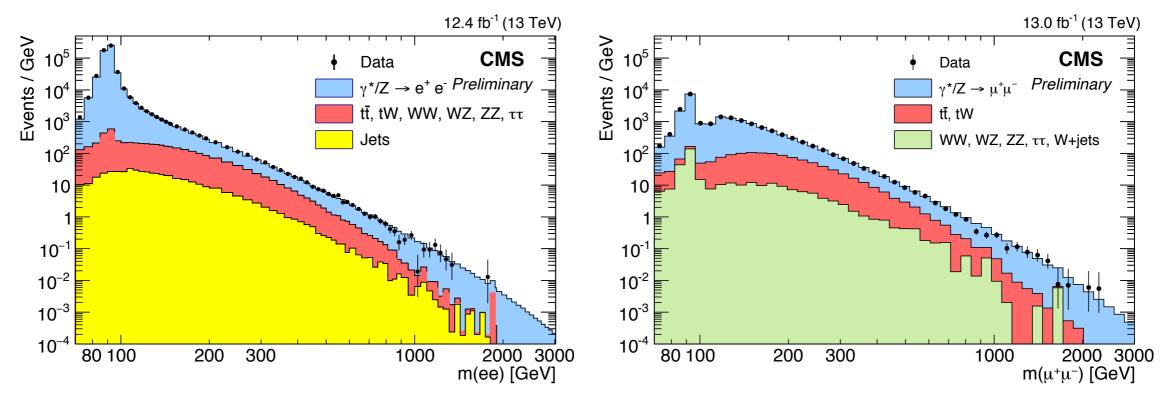
2. W' $\rightarrow \ell V (\ell = \tau)$



EXO-16-006

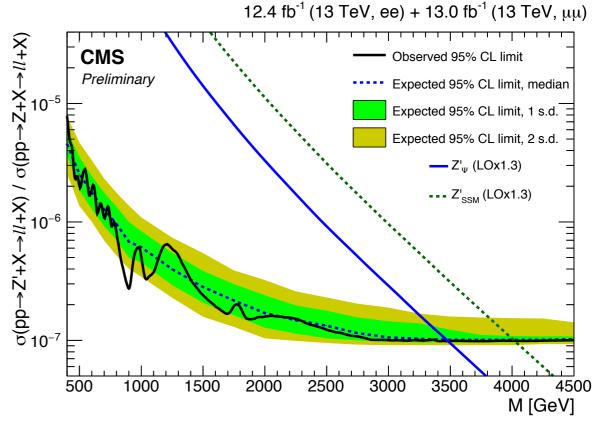
Search for W'→τν using 2.3 fb⁻¹ (2015)

- Hadronic decays of the tau result in low charged hadron multiplicity
- Leptonically decaying taus cannot be distinguished from W'→ℓv (ℓ=e/µ) and are covered by that analysis
- M_T is again used as a discriminator variable
- Similarly to W'→ℓv (ℓ=e/µ) limits are produced in a model independent way
 - m(W'_{SSM})>3.3 TeV



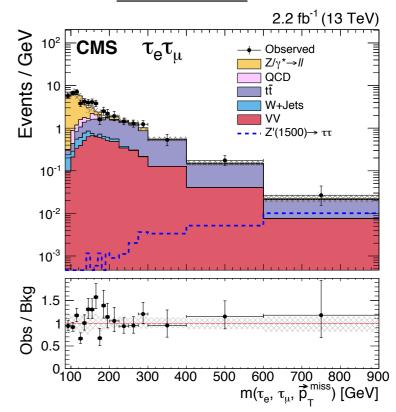
3. $Z' \rightarrow \ell\ell$ ($\ell = e/\mu$)

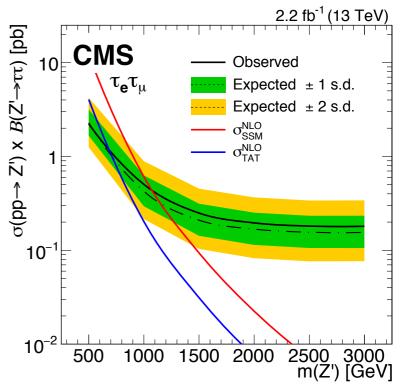
- An inclusive search for a new resonance using 13 fb⁻¹ (2016)
 - The MC background is normalised to the Z peak
 - The amount of jet background is estimated from data
- Muons are efficiently reconstructed, which leads to placing stronger limits on production
- Electrons provide extremely good resolution at high p_T which is useful for discoveries



3. $Z' \rightarrow \ell\ell$ ($\ell = e/\mu$)

- Results are interpreted in the ratio of the signal cross section/Z cross section so we are insensitive to the uncertainty on the luminosity
- The statistical analysis from the electron channel and muon channel are combined in order to place stronger limits on the lower bounds of the Z' mass
- No significant deviations from the SM
 - Limit on m(Z'_ψ)>3.5 TeV
 - Limit on m(Z'_{SSM})>4.0 TeV
- The limits are produced using only the Z' peak which allows for easy reinterpretation, such as within Dark Matter models

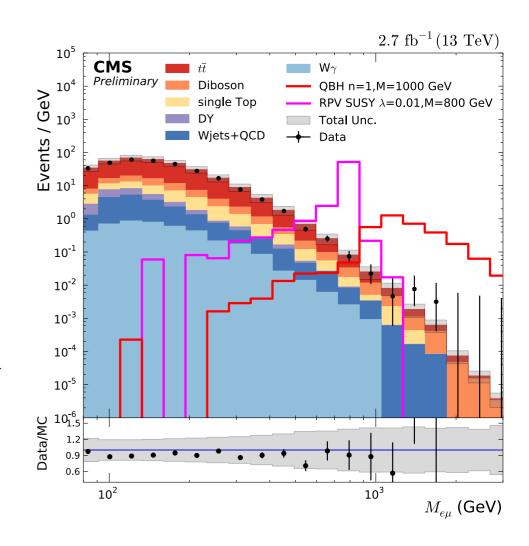

4. $Z' \rightarrow \ell\ell \ (\ell = \tau)$



- Searching for a heavy resonance decaying into two taus using 2.2 fb⁻¹ (2015)
 - Probing connections to the third generation
- Offline p_T cut of 35 (40) GeV for electrons (muons) and 20 (60) GeV for τ_h in $\tau_\ell \tau_h$ ($\tau_h \tau_h$) channel
 - Taus are required to be back to back
- Mass value is reconstructed using taus and missing transverse momentum vector

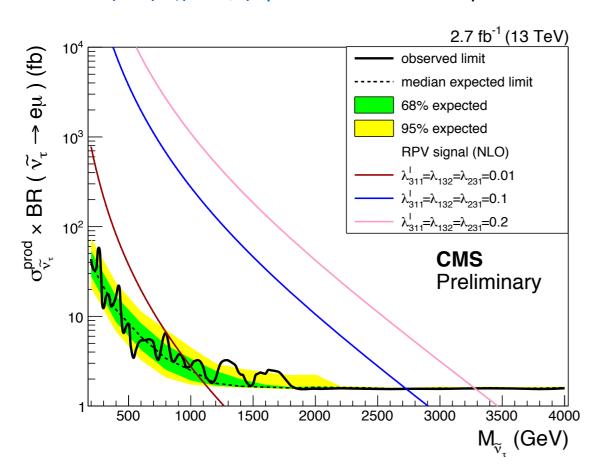
$$m(\tau_1, \tau_2, \vec{p}_{\mathrm{T}}^{\mathrm{miss}}) = \sqrt{(E_{\tau_1} + E_{\tau_2} + E_{\mathrm{T}}^{\mathrm{miss}})^2 - (\vec{p}_{\tau_1} + \vec{p}_{\tau_2} + \vec{p}_{\mathrm{T}}^{\mathrm{miss}})^2}.$$

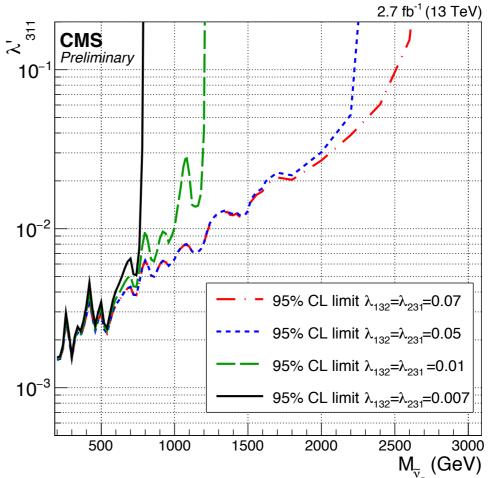
- Also set limits on models in which the resonance preferentially decays to taus such as the topcolorassisted technicolor (TAT)
 - Limit on m(Z'_{SSM})>2.1 TeV
 - Limit on m(Z'_{TAT})>1.7 TeV



5. X→eµ

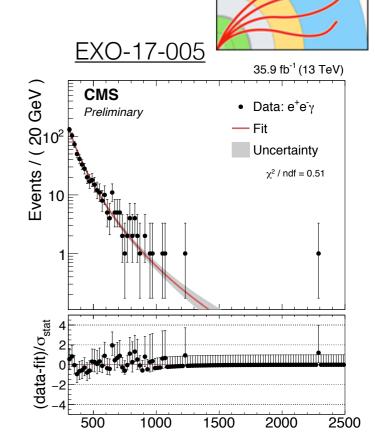
- Searching for heavy resonances decaying into eμ using 2.7 fb (2016)
- Lepton Flavour Violation may occur in models including τ sneutrino production in R-parity violating (RPV) supersymmetry (SUSY)
 - RPV SUSY also naturally generate non-zero neutrino masses
- p_T>35 (53) GeV for electron (muon)
 - A minimum transverse momentum requirement of p_T
 50 GeV is also required online
- The electron and muon are not required to have opposite charge (to avoid loss through charge mis-ID) and $M_{eu} \geq 200~GeV$
- SM background from processes with two prompt leptons as well as Wγ is obtained from MC while W+Jets and QCD multijet backgrounds are calculated using fake rate studies in data

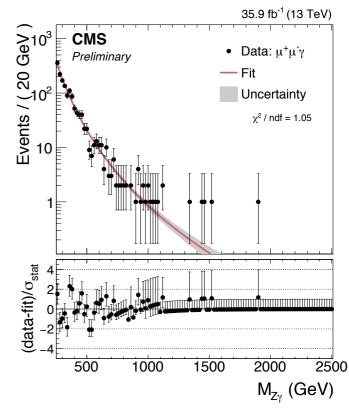




5. X→eµ

- m(X) > 1.0, 2.7, 3.3 **TeV** for RPV couplings $\lambda_{132} = \lambda_{231} = \lambda_{311}' = 0.01$, 0.1, 0.2
- Also interpreted in non-resonant QBH (not shown here)
- In narrow width approximation the σ×BR scales with the RPV coupling
 - Using this information and observed bounds, limit contours in the $(M(\tilde{v}_T), \lambda'_{311})$ plane can be produced as a function of a fixed value of $\lambda_{132} = \lambda_{231}$

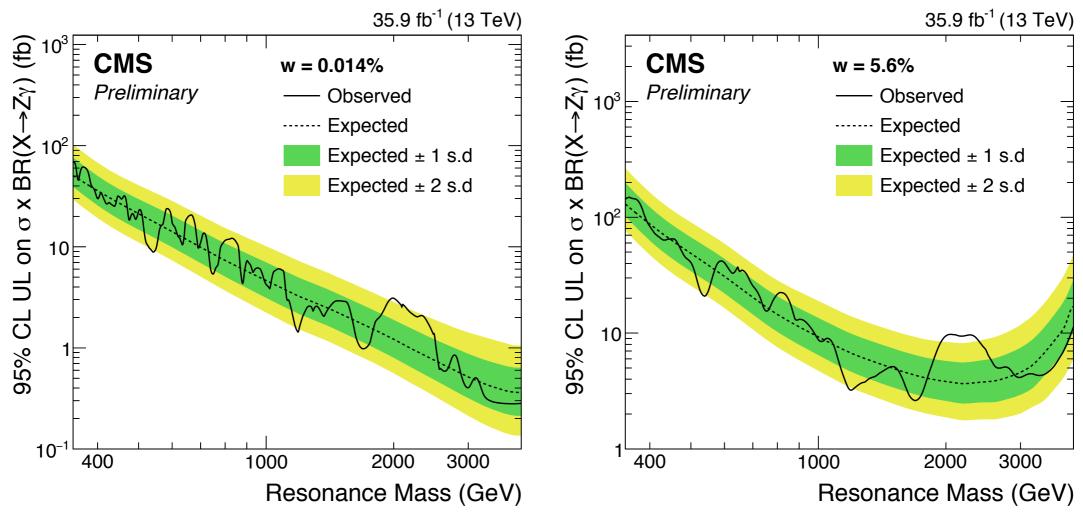




6. $X \rightarrow Z\gamma$

- Searching for a high mass resonance decaying to a Z boson and a photon using 36 fb⁻¹ (2016)
 - Sensitive to spin-1 resonances
- The search is performed in **both** the **leptonic** and **hadronic** decay channels (where hadronic decays dominate sensitivity above 2 TeV)
- Leading electron (muon) should have pT > 65 (52) GeV;
 subleading electron (muon) pT > 10 (10) GeV
- All jets are required to have pT > 200 GeV and $|\eta| < 2.0$
- The photon is required to satisfy pT > 65 (40) GeV in dielectron (dimuon) channels
- Leptonic channels are dominant at low mass

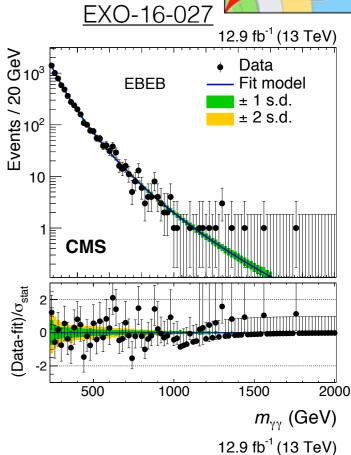
 M_{7v} (GeV)

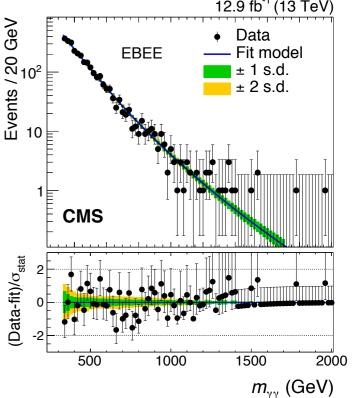


6. $X \rightarrow Z\gamma$

EXO-17-005

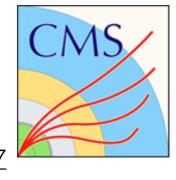
- The leptonic and hadronic channels are combined during the statistical analysis
- Limits are set on both narrow spin-0 resonances and wide spin-0 resonances up to m(X) > 4 TeV

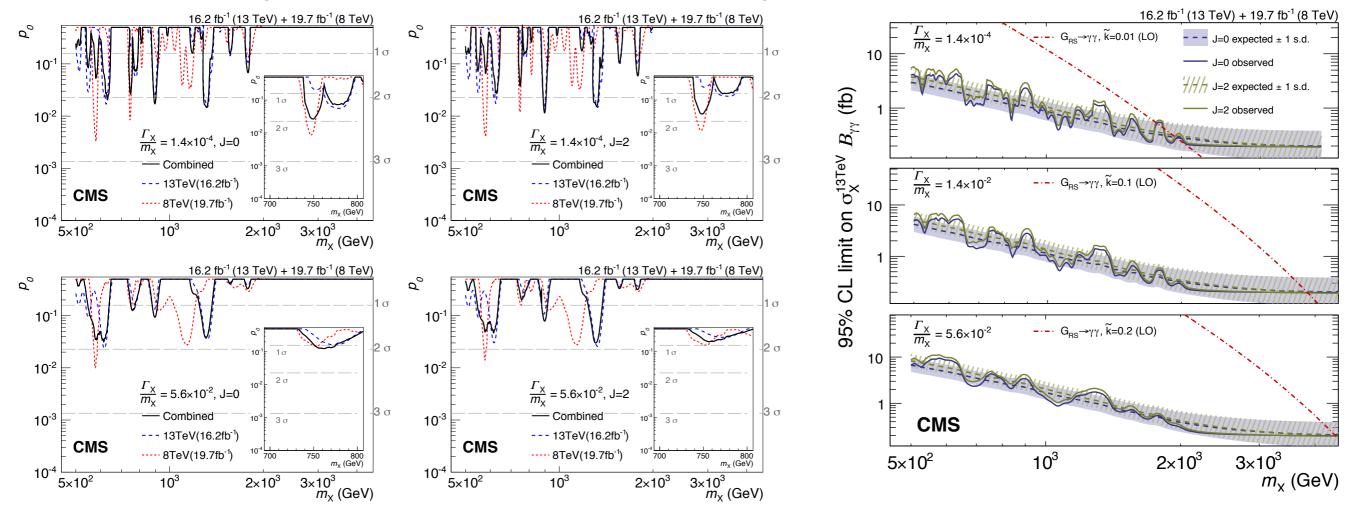




7. $X \rightarrow \gamma \gamma$

CMS


- Search for resonant production of photon pairs using 12.9 fb⁻¹ (2016) + 3.3 fb⁻¹ (2015) + 19.7 fb⁻¹ (Run I)
 - A very clean state without additional activity in the direction of the two photons
- Three values of the relative width Γ_X/m_X are used as benchmarks: 1.4×10^{-4} , 1.4×10^{-2} , and 5.6×10^{-2} ; with $0.5< m_X< 4.5$ TeV
- Photons are required to have pT > 75 GeV
- Events are categorised depending on the location of the two photons
- A fit is performed to the invariant mass spectra to determine the compatibility of the data with the background-only and the signal+background hypotheses


7. $X \rightarrow \gamma \gamma$

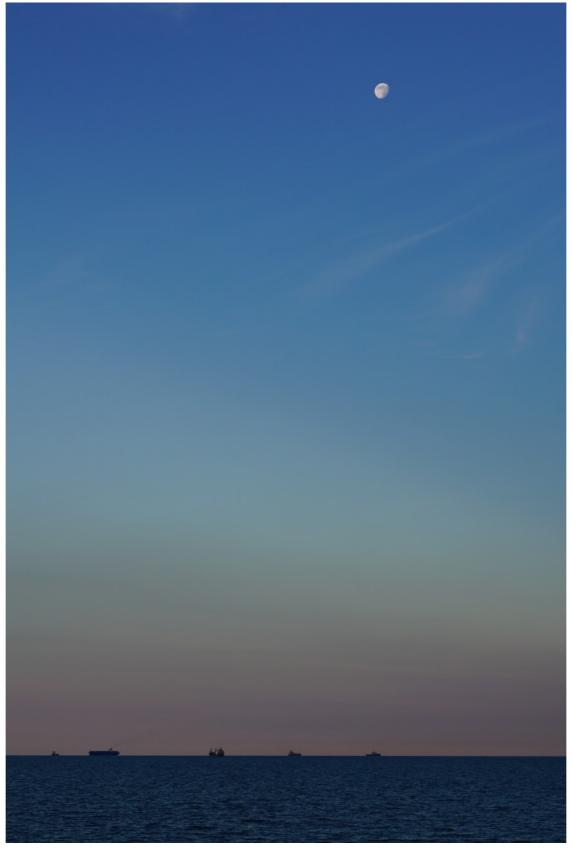
EXO-16-027

- Compatibility of the observation with the background-only hypothesis is evaluated by computing the background-only p-value
- Lower limits on the mass of the RS graviton are set as:
 - $m(RS_G)>3.85$ (4.45) TeV for $\tilde{k}=0.1$ (0.2)

• m(RS_G)>1.95 TeV except for $1.75 < m(RS_G) < 1.85$ TeV for \tilde{k} =0.01

Summary

- A summary of several analysis from CMS searching for new resonances with leptonic/photonic final states was presented using data collected up to and including 2016
- No excesses above the SM have been observed and lower limits have be placed on the mass of resonances from various theoretical models


#	Analysis	Model	Mass (TeV)
1	W'→ℓv (ℓ=e/μ)	SSM	4.1
2	W'→ℓv (ℓ=τ)	SSM	3.3
3	Z′→ℓℓ (ℓ=e/μ)	SSM (Ψ)	4.0 (3.5)
4	$Z' \rightarrow \ell\ell \ (\ell=T)$	SSM (TAT)	2.1 (1.7)
5	X→eµ	RPV SUSY	1.0-3.3
6	X→Zγ	Spin0	4.0
7	Χ→γγ	RS _G	1.95-4.45*

*Entire mass range not ruled out

Thanks!

