

EXCELENCIA

DE MAEZTU

MARÍA

EPS Conference on High Energy Physics Venice, Italy 5-12 July 2017

- 1. The DES Project
- 2. Current Status
- 3. A few selected Scientific Results
- 4. Conclusions

Optical/IR imaging survey with the Blanco 4m telescope at Cerro Tololo Inter-American Observatory(CTIO) in Chile

5000 sq-deg (1/8 of the sky) in grizY bands (2500 sq-deg overlapping with SPT survey) + 30 sq-deg time-domain griz (SNe)

Up to $i_{AB} \sim 24$ th magnitude at 10 σ (z~1.5)

New 570 Mpx camera with 3 sq-deg FoV, DECam

Installed on Blanco since august 2012

SURVEY

NGC 1365

NGC 1365 (the Great Barred Spiral Galaxy) is a barred spiral galaxy about 56 million light-years away in the constellation Fornax.

(Credit: DECam, DES Collaboration)

EPS-HEP 2017

Energéticas, Medioambientale y Tecnológicas

DARK ENERGY SURVEY

74 CCD chips (570 Mpx/image) (62 2kx4k image, 8 2kx2k alignment/focus, 4 2kx2k guiding)

Red Sensitive CCDs QE>50% @ 1000 nm 250 microns thick

3 sq-deg FoV Excellent image quality 0.27''/pixel

Low noise electronics (<15 e @ 250 kpx/s) <u>done by DES-</u> <u>Spain group</u>

Energéticas, Medioambientale y Tecnológicas

DARK ENERGY SURVEY

74 CCD chips (570 Mpx/image) (62 2kx4k image, 8 2kx2k alignment/focus, 4 2kx2k guiding)

Red Sensitive CCDs QE>50% @ 1000 nm 250 microns thick

3 sq-deg FoV Excellent image quality 0.27''/pixel

Low noise electronics (<15 e @ 250 kpx/s) <u>done by DES-</u> <u>Spain group</u>

DES Science Summary

DARK ENERGY

4 Probes of Dark Energy

Galaxy Clusters (dist & struct) Tens of thousands of clusters to z~1 Synergy with SPT, ACT, VHS

Weak Lensing (dist & struct) Shape and magnification measurements of 200 million galaxies

Baryon Acoustic Oscillations (dist) 300 million galaxies to z~1.4

Supernovae (dist) >3500 well-sampled Sne Ia to z~1

DES Science Summary

DARK ENERGY SURVEY

4 Probes of Dark Energy

Galaxy Clusters (dist & struct) Tens of thousands of clusters to z~1 Synergy with SPT, ACT, VHS

Weak Lensing (dist & struct) Shape and magnification measurements of 200 million galaxies

Baryon Acoustic Oscillations (dist) 300 million galaxies to z~1.4

Supernovae (dist) >3500 well-sampled Sne Ia to z~1

USA:_Fermilab, UIUC/NCSA, University of Chicago, LBNL, NOAO, University of Michigan, University of pennsylvania, Argonne National Laboratory, Ohio State University, Santa Cruz/SLAC Consortium, Texas A&M University, CTIO (in Chile)

DES Collaboration

~450 scientists from 25 institutions in 7 countries darkenergysurvey.org Facebook.com/darkenergysurvey

DARK ENERGY SURVEY

SURVEY

DES Survey Area

5000 square degrees, 1/8 of the sky

Footprint to be covered 900 seconds in each filter (g,r,i,z; 450 sec in Y) after 5 seasons.

Build depth over time

Centro de Investigaciones Energéticas, Medioambientales

y Tecnológicas

EPS-HEP 2017

DES Y4 ended on february 2017

DES is proyected for 5 years , up to 2018

Tiling = One 90 seconds exposure over entire footprint

DES has produced many results already

DARK ENERGY SURVEY

Over 100 papers published or submitted

Majority of early results based on Science Verification (SV) data (full depth mini-survey in 2012): less than 3% of full survey. An improvement of ~1 order of magnitude is expected for the final data set.

Some selected results published from Y1 and Y2 as well. <u>Cosmology analysis of Y1 data</u> <u>underway. Results are expected in a few weeks.</u>

Emphasis of early cosmology analyses has been on understanding systematic errors, with an eye to analyzing larger data sets in the future. **DES Y1 is already the most powerful data set ever for many probes, and a careful study of systematic errors is mandatory**

I will flash a few selected results

DES projected mass map from weak lensing

area

DARK ENERGY SURVEY

Dark Matter Mass Map

Based on measurements of shapes of background galaxies

Chang et al., PRL 115 (2015) 05301 Vikram et al., PRD 92 (2015) 022006

Blue: under-dense regions Red: over-dense regions Circles: visible foreground galaxy clusters

Largest contiguous lensing mass map ever, yet only 3% of final DES

Galaxy bias: Multi-probe approach

Galaxy bias: the relationship between the (dark) matter and galaxy distributions

 $\delta_{g}(z,\theta) = b(z,\theta) \, \delta_{m}(z,\theta)$

Multi-probe approach:

1. DES Galaxy clustering Crocce et al., MNRAS 455 (2016) 4301

2. Ratio between DES Galaxy map and DES lensing mass map Chang et al., MNRAS 459 (2016) 3203

3. CMB lensing around DES galaxies

Giannantonio et al., MNRAS 456 (2016) 3213

4. DES background Galaxy lensing around DES foreground galaxies

Prat et al., arXiv:1609.08167 [astro-ph]

Ciema

nergéticas, Medicambientale

v Tecnológica

Galaxy bias: Multi-probe approach

y Tecnológica

galaxy clustering + weak lensing

reiticas, Medicambienta

 Use a galaxy background galaxy sample to measure shapes (sources)

 Use DES sample of Luminous Red Galaxies (LRG) as lenses: excellent photo-z

w(v): correlation function of density of lenses $y_{t}(\vartheta)$: tangential shear of sources around lenses

 Combination is sensitive to cosmological parameters and relatively insensitive to galaxy bias.

galaxy clustering + weak lensing

DARK ENERG

galaxy clustering + weak lensing

DES Y1 Will combine cosmic shear, Galaxy-Galaxy lensing and Galaxy clustering to measure cosmological parameters

The DES Y1 data are very powerful:

- ~4x the area of the KiDS catalog and ~10x the area of DES SV & HSC release.
- ~2.5x the number of objects as the KiDS catalog, ~3x as HSC release, and ~10x as DES SV.

Results will be published in a few weeks

Science Verification data provided a wealth of exciting science, e.g. Galaxy clustering + weak lensing measurements. Cross-correlations with CMB + new probes.

Year 1 data, covering 1600 deg², are being analyzed now. Expect results in a few weeks

Cosmological results using combined probes (lensing+clustering). Many other new and interesting results. Stay tuned!!!

Years 2-4 data are recorded. Y1-Y3 dataset covers 5000 deg² to i_{AB} ~
23.2 mag: unique data set, extremely powerful for cosmology.
Results from Y1-Y3 expected to be out in 2018.

