COSMOLOGICAL CONSTANT RUNNING - DECOUPLING EFFECTS AND THE HIGGS MASS

BLAZENKA MELIC
Theoretical Physics Division IhlPlnys
Rudjer Boskovic Institute, Zagreb

HrZZ
arXiv I703.I0967, in collaboration with Oleg Antipin (RBI, Zagreb)

EPS-HEP 20I7, Venice, 5-I2 July 2017

COSMOLOGICAL CONSTANT PROBLEM

Hilbert-Einstein action (neglecting higher order R-and derivative terms):

$$
S_{H E}=\int d^{4} x \sqrt{-g}\left\{\mathcal{L}_{S M}+\xi \varphi^{\dagger} \varphi R-\frac{1}{16 \pi G}\left(R+2 \Lambda_{\text {vac }}\right)\right\}
$$

Vacuum energy density

$$
\rho_{\Lambda}^{v a c}(\mu) \equiv \frac{\Lambda(\mu)}{8 \pi G(\mu)}
$$

Induced vacuum energy density
$V_{0}=-\frac{1}{2} m^{2} \phi^{2}+\frac{1}{8} \lambda \phi^{4}$
$\rho_{\text {ind }}(\mu) \equiv V_{0}(\langle\phi\rangle)=-\frac{m^{4}(\mu)}{2 \lambda(\mu)} \quad \begin{aligned} & \text { Higgs condensate } \\ & \text { contribution }\end{aligned}$
$\rho_{i n d}(\mu=246 G e V) \sim 10^{8} G e V^{4}$

$$
\rho_{\text {phys }}=\rho_{\Lambda}^{\mathrm{vac}}\left(\mu_{c}\right)+\rho_{\text {ind }}\left(\mu_{c}\right)+\ldots=10^{-47} \mathrm{GeV}^{4}
$$

Today $\mu_{c}=\mathcal{O}\left(10^{-3}\right) e V$

DECOUPLING EFFECTS

At low energies \& for $m_{\text {light }} \ll \mu \ll m \Rightarrow$ expectations from the dimensional analysis and the decoupling theorem (Appelquist-Carazzone):

$$
\begin{aligned}
\beta\left(m_{\text {light }}, \frac{\mu}{m}\right)=a m_{\text {light }}^{4}+b & \left(\frac{\mu}{m}\right)^{2} m^{4}
\end{aligned}+c\left(\frac{\mu}{m}\right)^{4} m^{4}+d \mu^{2} R+\ldots .
$$

To account properly for the decoupling effects one neeed to go to the mass-dependent renormalization schemes
(decoupling does not hold in the mass-independent schemes like MS)

TOY MODEL - REAL SCALAR FIELD

$$
L=\frac{1}{2} m^{2} \phi^{2}+\frac{1}{8} \lambda \phi^{4}
$$

One-loop effective potential:

$$
V=V_{v a c}\left(\rho_{\Lambda}^{\mathrm{vac}}, m^{2}, \lambda, \mu\right)+V_{\text {scalar }}\left(\phi, m^{2}, \lambda, \mu\right)
$$

Separate pieces satisfy separate RGE equations: $\frac{d V(\langle\phi\rangle)}{d \mu}=0$

TOY MODEL - MASS INDEPENDENT SCHEME (MS)

$\left(\mu \frac{\partial}{\partial \mu}+\beta_{\lambda} \frac{\partial}{\partial \lambda}+\gamma_{m} m^{2} \frac{\partial}{\partial m^{2}}+\beta_{\rho_{\Lambda}^{\mathrm{vac}}} \frac{\partial}{\partial \rho_{\Lambda}^{\mathrm{vac}}}\right) V_{v a c}\left(m^{2}, \lambda, \rho_{\Lambda}^{\mathrm{vac}}, \mu\right)=0$
vacuum part:

$$
\begin{equation*}
\mu \frac{\partial \rho_{\Lambda}^{\mathrm{vac}}}{\partial \mu} \equiv \beta_{\rho_{\Lambda}^{\mathrm{vac}}}=\frac{m^{4}}{32 \pi^{2}} \tag{MS}
\end{equation*}
$$

$\left(\mu \frac{\partial}{\partial \mu}+\beta_{\lambda} \frac{\partial}{\partial \lambda}+\gamma_{m} m^{2} \frac{\partial}{\partial m^{2}}\right) V_{s c a l}\left(\langle\phi\rangle, m^{2}, \lambda, \mu\right)=0$
induced part:

$$
\mu \frac{\partial \rho_{i n d}(\mu)}{\partial \mu}=\mu \frac{\partial}{\partial \mu}\left(-\frac{m^{4}(\mu)}{2 \lambda(\mu)}\right)=\rho_{i n d}(\mu)\left(2 \frac{\beta_{m^{2}}}{m^{2}}-\frac{\beta_{\lambda}}{\lambda}\right)
$$

TOY MODEL - MASS INDEPENDENT SCHEME (MS)

$\left(\mu \frac{\partial}{\partial \mu}+\beta_{\lambda} \frac{\partial}{\partial \lambda}+\gamma_{m} m^{2} \frac{\partial}{\partial m^{2}}+\beta_{\rho_{\Lambda}^{\mathrm{vac}}} \frac{\partial}{\partial \rho_{\Lambda}^{\mathrm{vac}}}\right) V_{v a c}\left(m^{2}, \lambda, \rho_{\Lambda}^{\mathrm{vac}}, \mu\right)=0$
vacuum part:

$$
\mu \frac{\partial \rho_{\Lambda}^{\mathrm{vac}}}{\partial \mu} \equiv \beta_{\rho_{\Lambda}^{\mathrm{vac}}}=\frac{m^{4}}{32 \pi^{2}}
$$

HOW TO ACCOIINIT

$$
\left(\mu \frac{\partial}{\partial \mu}+\beta_{\lambda} \frac{\partial}{\partial \lambda}+\gamma_{m} m^{2} \frac{\partial}{\partial m^{2}}\right) V_{\text {scal }}\left(\langle\phi\rangle, m^{2}, \lambda, \mu\right)=0
$$

induced part:

$\overline{M S}$

$$
\mu \frac{\partial \rho_{\text {ind }}(\mu)}{\partial \mu}=\mu \frac{\partial}{\partial \mu}\left(-\frac{m^{4}(\mu)}{2 \lambda(\mu)}\right)=\rho_{\text {ind }}(\mu)\left(2 \frac{\beta_{m^{2}}}{m^{2}}-\frac{\beta_{\lambda}}{\lambda}\right)
$$

valid ONLY in the UV regime! $\mu \gg m$

TOY MODEL - MASS DEPENDENT SCHEME (MOM)

Example:

$$
A\left(p^{2}\right)_{\overline{M S}}=A\left(p^{2}\right)+c . t .=\frac{1}{32 \pi^{2}} \int_{0}^{1} d x \log \left(\frac{m^{2}-x(1-x) p^{2}}{\mu_{\overline{M S}}^{2}}\right)
$$

$$
A\left(p^{2}\right)_{\mathrm{MOM}}=A\left(p^{2}\right)+c . t .=\frac{1}{32 \pi^{2}} \int_{0}^{1} d x \log \left(\frac{m^{2}-x(1-x) p^{2}}{m^{2}+x(1-x) \mu^{2}}\right)
$$

$\mu \frac{\partial \rho_{i n d}(\mu)}{\partial \mu}=\rho_{i n d}(\mu)\left(2 \frac{\beta_{m^{2}}}{m^{2}}-\frac{\beta_{\lambda}}{\lambda}\right) \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{m^{2}+x(1-x) \mu^{2}}$

MOM

Similarly one can derive the vacuum part in the MOM scheme:
$\mu{\frac{\partial \rho_{\Lambda}^{\mathrm{vac}}}{\partial \mu}}_{\mid \mathrm{MOM}}=\frac{m^{4}}{32 \pi^{2}} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{m^{2}+x(1-x) \mu^{2}}$

STANDARD MODEL - MOM SCHEME

Contributions of SM particles to the effective potential:

Φ	i	n_{i}	κ_{i}	κ_{i}^{m}	c_{i}
$W^{ \pm}$	1	6	$g^{2} / 4$	0	$5 / 6$
Z^{0}	2	3	$\left(g^{2}+g^{\prime 2}\right) / 4$	0	$5 / 6$
t	$3-12$	$y_{\mathrm{t}}^{2} / 2$	0	$3 / 2$	
ϕ	4	1	$3 \lambda / 2$	1	$3 / 2$
χ_{i}	5	3	$\lambda / 2$	1	$3 / 2$

By using the condition $\mu \frac{d V}{d \mu} \sim\left(\phi^{4}[\ldots]+m^{2} \phi^{2}[\ldots]+.m^{4}[\ldots]\right)=0$
calculated RGE give:

$$
\begin{aligned}
& \frac{1}{8} \beta_{\lambda}-\frac{1}{2} \gamma_{\phi} \lambda=\sum_{i} \frac{n_{i} \kappa_{i}^{2}}{32 \pi^{2}} \\
& \frac{1}{2} \gamma_{m}-\gamma_{\phi}=\sum_{i} \frac{n_{i} \kappa_{i} \kappa_{i}^{m}}{16 \pi^{2}}
\end{aligned}
$$

$\mu \frac{\partial \rho_{\Lambda}^{v a c}}{\partial \mu}=m^{4} \sum_{i} \frac{n_{i}\left(\kappa_{i}^{m}\right)^{2}}{32 \pi^{2}}$
from which follow then CC running

STANDARD MODEL - MOM SCHEME

Contributions of SM particles to the CC running for $\phi=\langle\phi\rangle \Rightarrow \gamma_{\phi}=0$

$$
\begin{aligned}
& \mu{\frac{\partial \rho_{\Lambda}^{\mathrm{vac}}(\mu)}{\partial \mu}}_{\mid \mathrm{MOM}}=\frac{\langle\phi\rangle^{4}}{32 \pi^{2}} \sum_{i} n_{i}\left[\frac{\kappa_{i}^{m} \lambda}{2}\right]^{2} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{p h y s}^{2}\right)_{i}+x(1-x) \mu^{2}} \\
& \mu{\frac{\partial \rho_{i n d}(\mu)}{\partial \mu}}_{\mid \mathrm{MOM}}=\frac{\langle\phi\rangle^{4}}{32 \pi^{2}} \sum_{i} n_{i} \kappa_{i}\left[\kappa_{i}-\lambda \kappa_{i}^{m}\right] \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{\text {phys }}^{2}\right)_{i}+x(1-x) \mu^{2}}
\end{aligned}
$$

$$
M_{i}^{2}(\phi)=\kappa_{i} \phi^{2}-m^{2} \kappa_{i}^{m} \quad \text { background-dependent mass matrix } \quad\langle\phi\rangle^{2}=\frac{2 m^{2}}{\lambda}
$$

$$
\mu \frac{\partial\left(\rho_{\text {ind }}+\rho_{\Lambda}^{\mathrm{vac}}\right)}{\partial \mu}{ }_{\mid \mathrm{MOM}}=\sum_{i} \frac{n_{i}}{32 \pi^{2}}\left(M_{\text {phys }}^{4}\right)_{i} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{p h y s}^{2}\right)_{i}+x(1-x) \mu^{2}}
$$

STANDARD MODEL - DECOUPLING

$$
\mu{\frac{\partial\left(\rho_{i n d}+\rho_{\Lambda}^{\mathrm{vac}}\right)}{\partial \mu}}_{\mid \mathrm{MOM}}=\sum_{i} \frac{n_{i}}{32 \pi^{2}}\left(M_{p h y s}^{4}\right)_{i} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{p h y s}^{2}\right)_{i}+x(1-x) \mu^{2}}
$$

$$
\int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{p h y s}^{2}\right)_{i}+x(1-x) \mu^{2}}=\left\{\begin{array}{c}
1 \\
\frac{\mu^{2}}{6\left(M_{p h y s}^{2}\right)_{i}}-\frac{\mu^{4}}{30\left(M_{p h y s}^{4}\right)_{i}}
\end{array}\right.
$$

$$
\begin{array}{rlrl}
\mu^{2} & \gg\left(M_{\text {phys }}^{2}\right)_{i} & & \text { as before } \\
\mu^{2} & <\left(M_{\text {phys }}^{2}\right)_{i} & \text { DECOUPLING }
\end{array}
$$

\Rightarrow Appelquist-Carazzone theorem for CC running:

$$
\mu \frac{\partial\left(\rho_{\Lambda}^{\mathrm{vac}}+\rho_{i n d}\right)}{\partial \mu} \approx \sum_{j} \frac{n_{j}\left(m_{l i g h t}^{4}\right)_{j}}{32 \pi^{2}}-\frac{\mu^{2}}{12(4 \pi)^{2}}\left[12 M_{t}^{2}-6 M_{W}^{2}-3 M_{Z}^{2}-M_{H}^{2}\right]+\frac{\mu^{4}}{30(4 \pi)^{2}}
$$

(Goldstons cancel in the sum - only physical particles contribute)
(similar to the Veltman condition)
THIS PART IS RESPONSIBLE FOR THE CC RUNNING!

$$
12 M_{t}^{2}-6 M_{W}^{2}-3 M_{Z}^{2}-M_{H}^{2} \simeq 0 ? \Rightarrow \text { FAILS INTHE SM }!
$$

STANDARD MODEL IN THE CONSTANT CURVATURE SPACE

$$
S_{H E}=\int d^{4} x \sqrt{-g}\left\{\mathcal{L}_{S M}+\xi \varphi^{\dagger} \varphi R-\frac{1}{16 \pi G}\left(R+2 \Lambda_{v a c}\right)\right\}
$$

Φ	i	n_{i}	κ_{i}	κ_{i}^{m}	κ_{i}^{R}
$W^{ \pm}$(ghost)	1	-2	$g^{2} / 4$	0	$1 / 2$
$W^{ \pm}$	2	8	$g^{2} / 4$	0	$1 / 2$
Z^{0} (ghost)	3	-1	$\left(g^{2}+g^{\prime 2}\right) / 4$	0	$1 / 2$
Z^{0}	4	4	$\left(g^{2}+g^{\prime 2}\right) / 4$	0	$1 / 2$
t	5	-12	$y_{\mathrm{t}}^{2} / 2$	0	$1 / 4$
ϕ	6	1	$3 \lambda / 2$	1	$1 / 2$
χ_{i}	7	3	$\lambda / 2$	1	$1 / 2$

$$
\begin{array}{r}
\mathcal{M}_{i}^{2}(\langle\phi\rangle)=\kappa_{i}\langle\phi\rangle^{2}-m^{2} \kappa_{i}^{m}+\left(\kappa_{i}^{R}-\frac{1}{6}\right) R \\
\langle\phi\rangle^{2}=\frac{2\left(m^{2}-\xi R\right)}{\lambda} \quad \text { (vacuum is R dependent) } \\
\tilde{M}_{i}^{2}=M_{i}^{2}(\langle\phi\rangle)-2 \kappa_{i} \frac{\xi R}{\lambda} \text { (masses are R dependent) }
\end{array}
$$

\Longrightarrow Appelquist-Carazzone th. for CC running in the curved space:
$\mu \frac{\partial\left(\rho_{\text {ind }}+\rho_{\Lambda}^{\mathrm{vac}}+\kappa R\right)}{\partial \mu} \simeq \sum_{j} \frac{n_{j}\left(\mathcal{M}_{\text {light }}^{4}\right)_{j}}{32 \pi^{2}}+\frac{\mu^{2}}{12(4 \pi)^{2}}\left(-12 \tilde{M}_{t}^{2}+6 \tilde{M}_{W}^{2}+3 \tilde{M}_{Z}^{2}+\tilde{M}_{H}^{2}+\frac{7}{3} R\right)$

MASSLESS THEORY

$$
\mu{\frac{\partial\left(\rho_{i n d}+\rho_{\Lambda}^{\mathrm{vac}}\right)}{\partial \mu}}_{\mid \mathrm{MOM}}=\sum_{i} \frac{n_{i}}{32 \pi^{2}}\left(M_{\text {phys }}^{4}\right)_{i} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{\text {phys }}^{2}\right)_{i}+x(1-x) \mu^{2}}
$$

$$
\mu \frac{\partial \rho_{\Lambda}^{\mathrm{vac}}}{\partial \mu} \equiv \beta_{\rho_{\Lambda}^{\mathrm{vac}}}=\frac{m^{4}}{32 \pi^{2}}=0(\mathrm{~m}=0) \quad \longrightarrow \rho_{\Lambda}^{\mathrm{vac}} \quad \text { is CONSTANT }
$$

$$
\mu \frac{\partial \rho_{\text {ind }}}{\partial \mu}=\frac{\langle\phi\rangle^{4}}{32 \pi^{2}} \sum_{i} n_{i} \kappa_{i}^{2} \int_{0}^{1} \frac{x(1-x) \mu^{2} d x}{\left(M_{p h y s}^{2}\right)_{i}+x(1-x) \mu^{2}}=\frac{\mu^{2}\langle\phi\rangle^{2}}{12(4 \pi)^{2}} \sum_{i} \kappa_{i} n_{i}+\frac{\mu^{4}}{20(4 \pi)^{2}}
$$

$$
M_{i}^{2}(\phi)=\kappa_{i} \phi^{2}
$$

[simple structure of CC running]

MASSLESS THEORY: SM WITH A REAL SCALAR

$$
V_{0}=V_{0}^{S M}+\lambda_{H S} H^{\dagger} H S^{2}+\frac{\lambda_{S}}{4} S^{4}
$$

Generalized Veltman condition -from the CC running ($\mathrm{M}_{\mathrm{H}}=0$ in the massless theory):

$$
12 M_{t}^{2}-6 M_{W}^{2}-3 M_{Z}^{2}-M_{S}^{2}=0 \Rightarrow M_{S}^{2}(\phi) \approx(550 G e V)^{2}
$$

$$
M_{S}^{2}(\phi)=\lambda_{H S} \phi^{2} \quad \Rightarrow \quad \lambda_{H S}(\mu)=6 y_{t}^{2}(\mu)-\frac{9}{4} g^{2}(\mu)-\frac{3}{4} g^{\prime 2}(\mu) \approx 4.8
$$

M_{H} is generated by the one-loop Coleman-Weinberg mechanism:

$$
M_{H}^{2}=\frac{3}{8 \pi^{2}}\left[\frac{1}{16}\left(3 g^{4}+2 g^{2} g^{\prime 2}+g^{4}\right)-y_{t}^{4}+\frac{1}{3} \lambda_{H S}^{2}\right] v_{E W}^{2} \approx(125 G e V)_{\text {prediction! }}^{2}
$$

CONCLUSIONS

we have considered the RG running of the Cosmological Constant
we have showed that only RG running of the total (induced + vacuum) CC exhibits behavior consistent with the decoupling theorem
we have provided generalization to the constant curvature space
we have provided a simple extension of the SM with addition of one massless real scalar where condition of absence of leading RG effect allowed us to predict the (radiative) Higgs mass correctly

