Search for a new Higgs boson-like low-mass resonance in the diphoton final state at $\sqrt{s} = 8$ TeV in pp collisions at CMS

Linda Finco

IPN Lyon (IN2P3-CNRS)/UCB Lyon 1, France

On behalf of the CMS Collaboration

HEP 2017

Venice (Italy)

July 7th 2017
Theoretical Motivations

Is the new particle discovered in 2012 by the CMS and ATLAS Collaborations at a mass of 125 GeV really the Standard Model Higgs boson?

Some **BSM theories** predict **modified** and **extended Higgs sectors**:

- **General Two Higgs Doublet Model (2HDM)**
 - 2 Higgs Doublets → 5 Higgs bosons: h, H, a, H^\pm
- **Next-to-Minimal Supersymmetric Standard Model (NMSSM)**
 - 2 Higgs Doublets + 1 singlet → 7 Higgs bosons: $h_1, h_2, h_3, a_1, a_2, H^\pm$

- **The Higgs boson at 125 GeV** can be identified as the **next-to-lightest scalar**, allowing to focus on a possible lighter particle

- **Strong interest** from the **theoretical community**

G. Cacciapagia et al., JHEP 1612 (2016) 068
Experimental Motivations

- Small excess of events (≈2σ) at LEP observed by 3 of the 4 experiments in $bb/\tau\tau$ channels

- During LHC Run I, the standard $H \rightarrow \gamma\gamma$ search range was [110,150] GeV
- Clean signature with two isolated and highly energetic photons
- Final state fully reconstructed with excellent mass resolution
- Background from QCD ($\gamma\gamma \rightarrow \gamma j \rightarrow jj$) large enough to be evaluated directly on data

![LEP Signal Plot](image)

Physics Letters. 565(4) :81–75
The $H \to \gamma\gamma$ Decay Channel at Low Mass

STANDARD $H \to \gamma\gamma$ ANALYSIS

LOW-MASS $H \to \gamma\gamma$ ANALYSIS

NARROW SIGNAL PEAK

LARGE FALLING BACKGROUND
The $H \rightarrow \gamma\gamma$ Decay Channel at Low Mass

MAIN CHALLENGES:

- Difficulty to extend the range to very low mass values (mainly for the trigger)
- Lower limit at 80 GeV
The $H\rightarrow\gamma\gamma$ Decay Channel at Low Mass

MAIN CHALLENGES:

• Additional Drell-Yan background $Z\rightarrow ee$, with electrons misidentified as photons

 Loss of sensitivity around 90 GeV

STANDARD $H\rightarrow\gamma\gamma$ ANALYSIS

LOW-MASS $H\rightarrow\gamma\gamma$ ANALYSIS

Analysis Strategy

- Select two "good quality" photons
- Measure photon energy precisely
- Find the primary vertex of the decay

- Very similar to the standard $H \rightarrow \gamma \gamma$ analysis (see Michael’s talk yesterday)
- Event categorization defined to maximize S/B
- Signal extracted from background by fitting the observed diphoton mass distributions in each category

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1 - \cos \theta)}$$

Photon Energy

\[m_{\gamma\gamma} = \sqrt{2E_1E_2(1 - \cos \theta)} \]

- Photon energy reconstructed by building clusters of energy deposits in the electromagnetic calorimeter.

- Energy and its uncertainty corrected for local and global shower containment regression technique:
 - corrects photons’ energies
 - provides an estimate of energy resolution

- Energy scale in data corrected as a function of data taking epochs, pseudorapidity, EM shower width and transverse energy

- Smearing to the reconstructed photon energy in MC to match the resolution in data \(Z \rightarrow ee \) peak used as reference
Vertex Identification

\[m_{\gamma\gamma} = \sqrt{2E_1E_2(1 - \cos \theta)} \]

- **Vertex assignment** considered as correct within 1 cm of the diphoton interaction point
 - negligible impact on mass resolution
- **Multi-variate approach:**
 - Observables related to tracks recoiling against the diphoton system
 - direction of conversion tracks
- **Second MVA discriminant** to estimate the probability for the vertex assignment to be within 1 cm
 - used for diphoton classification
- Method validated on \(Z \rightarrow \mu\mu \) events, by refitting vertices ignoring the muon tracks

\[\varepsilon_{\text{vtx}} \sim 80\% \]

Photon Selection

- **Trigger selection:**
 Trigger paths based on transverse energy, H/E, electromagnetic shower shapes and isolation variables, $m_{\gamma\gamma}$

- **Preselection:**
 - Similar to trigger requirements, but more stringent
 - Specific cuts for the low-mass analysis
 - Electron veto based on pixel detector

- **Photon Identification:**
 - Multi-Variate approach to reject fake photon candidates (mainly from π^0 mesons produced in jets)
 - Shower shape and isolation observables, median energy density (ρ)
 - BDT output provides an estimate of the per-photon quality

Event Categorization

• To gain sensitivity, events are split into classes according to their expected signal/background ratio
• Events are categorized according to the photon kinematics, per-event mass resolution, photon ID and good vertex probability by a multivariate classifier (same as the standard $H \rightarrow \gamma\gamma$ analysis)
• Number of classes limited by MC DY statistics (4 classes, no exclusive classes tagging production modes like in standard analysis)
Signal Model

- $H\rightarrow\gamma\gamma$ MC samples with m_H from **80 to 110 GeV** are used (5 GeV steps)
- The model is **interpolated between the mass points**
- The **signal shape** corresponds to a **standard Higgs boson**
- The signal is fitted by a **sum of Gaussian distributions** in each event class (then combined together)
Background Model

CONTINUUM BACKGROUND
• Modeled with Bernstein polynomials (order chosen with a p-value test)

DRELL-YAN CONTRIBUTION
• Modeled with a double-sided Crystal Ball (DCB) distribution
• Shape parameters extracted by fitting MC Z → ee events passing the whole analysis selection (double-fake events)
• Data/MC systematic uncertainty estimated from single-fake Z → ee events

FINAL BACKGROUND MODEL
Bernstein polynomial + double-sided Crystal Ball
• Fitted to the data
• DCB fraction let floating
Results

- No significant excess is observed
- Maximum significance of 1.9 σ (no Look-Elsewhere Effect) at 97.5 GeV, about the same value observed at LEP
- Worse sensitivity around the Z boson mass
Conclusions

• The search for a **Higgs boson at low mass** values is strongly motivated by **theoretical predictions** (2HDM, NMSSM)

• The **standard \(H \rightarrow yy \)** analysis has been **extended** to the mass range \([80, 110] \text{ GeV}\), analyzing Run I data collected by CMS

• The low-mass analysis has **specific features**, in particular the Drell-Yan contribution

• **No evidence for new particle** has been observed

Looking forward to seeing the results at 13 TeV!
Backup
Mass Resolution

![Graphs showing mass resolution with CMS EGM-14-001]
Mass Spectra

CLASS 0

![Mass Spectrum Class 0](image1)

CLASS 1

![Mass Spectrum Class 1](image2)

CLASS 2

![Mass Spectrum Class 2](image3)

CLASS 3

![Mass Spectrum Class 3](image4)
Results – ggH + ttH Production Modes
Results – VBF + VH Production Modes
Production Modes

4 PRODUCTION MECHANISMS
Decay Modes

5 MAIN DECAY MODES EXPLOITED:

- $H \rightarrow bb$ (~58%)
- $H \rightarrow WW \rightarrow 2l2\nu$ (~22%)
- $H \rightarrow gg$ (~8.5%)
- $H \rightarrow \tau\tau$ (~6%)
- $H \rightarrow ZZ \rightarrow 4l$ (~3%)
- $H \rightarrow \gamma\gamma$ (~0.2%)