

Search for a new Higgs boson-like low-mass resonance in the diphoton final state at $\sqrt{s} = 8$ TeV in pp collisions at CMS

Linda Finco

IPN Lyon (IN2P3-CNRS)/UCB Lyon 1, France

On behalf of the CMS Collaboration

HEP 2017 Venice (Italy)

July 7th 2017

Theoretical Motivations

Is the new particle discovered in 2012 by the CMS and ATLAS Collaborations at a mass of 125 GeV really the Standard Model Higgs boson?

Some **BSM theories** predict **modified** and **extended Higgs sectors**:

- General Two Higgs Doublet Model (2HDM)
 - 2 Higgs Doublets => 5 Higgs bosons: h, H, a, H[±]
- Next-to-Minimal Supersymmetric Standard Model (NMSSM)
- The Higgs boson at 125 GeV can be identified as the next-to-lightest scalar, allowing to focus on a possible lighter particle
- Strong interest from the theoretical community

Experimental Motivations

 Small excess of events (~2σ) at LEP observed by 3 of the 4 experiments in bb/ττ channels

- During LHC Run I, the standard H→γγ
 search range was [110,150] GeV
- Clean signature with two isolated and highly energetic photons
- Final state fully reconstructed with excellent mass resolution
- Background from QCD (γγ γj jj) large enough to be evaluated directly on data

The $H \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

The $H \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

MAIN CHALLENGES:

Difficulty to extend the range to very low mass values (mainly for the trigger)
 Lower limit at 80 GeV

The $H \rightarrow \gamma \gamma$ Decay Channel at Low Mass

STANDARD $H \rightarrow \gamma \gamma$ ANALYSIS

LOW-MASS $H \rightarrow \gamma \gamma$ ANALYSIS

MAIN CHALLENGES:

- Additional Drell-Yan **background** $Z \rightarrow ee$, with electrons misidentified as photons
 - Loss of sensitivity around 90 GeV

Analysis Strategy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Select two "good quality" photons
- Measure photon energy precisely
- Find the **primary vertex** of the decay
- Very similar to the standard $H \rightarrow \gamma \gamma$ analysis (see Michael's talk yesterday)
- **Event categorization** defined to maximize S/B
- Signal extracted from background by fitting the observed diphoton mass distributions in each category

Photon Energy

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

- Photon energy reconstructed by building clusters of energy deposits in the electromagnetic calorimeter.
- Energy and its uncertainty corrected for local and global shower containment
 - regression technique:
 - corrects photons' energies
 - provides an estimate of energy resolution
- Energy scale in data corrected as a function of data taking epochs, pseudorapidity, EM shower width and transverse energy
- Smearing to the reconstructed photon energy in MC to match the resolution in data
 Z → ee peak used as reference

Vertex Identification

$$m_{\gamma\gamma} = \sqrt{2E_1E_2(1-\cos\theta)}$$

 Vertex assignment considered as correct within 1 cm of the diphoton interaction point

negligible impact on mass resolution

- Multi-variate approach:
 - Observables related to tracks recoiling against the diphoton system
 - direction of conversion tracks
- Second MVA discriminant to estimate the probability for the vertex assignment to be within 1 cm

used for diphoton classification

• Method validated on $Z \rightarrow \mu\mu$ events, by refitting vertices ignoring the muon tracks

Photon Selection

• Trigger selection:

Trigger paths based on transverse energy, H/E, electromagnetic shower shapes and isolation variables, m_{vv}

- Preselection:
 - Similar to trigger requirements, but more stringent
 - Specific cuts for the low-mass analysis
 - Electron veto based on pixel detector

• Photon Identification:

- Multi-Variate approach to reject fake photon candidates (mainly from π⁰ mesons produced in jets)
- Shower shape and isolation observables, median energy density (ρ)
- BDT output provides an estimate of the per-photon quality

BDT OUTPUT

Event Categorization

- To gain sensitivity, events are split into classes according to their expected signal/ background ratio
- Events are categorized according to the photon kinematics, per-event mass resolution, photon ID and good vertex probability by a multivariate classifier (same as the standard H→ γγ analysis)
- Number of classes limited by MC DY statistics (4 classes, no exclusive classes tagging production modes like in standard analysis)

Signal Model

- $H \rightarrow \gamma \gamma$ MC samples with m_{H} from 80 to 110 GeV are used (5 GeV steps)
- The model is interpolated between the mass points
- The signal shape corresponds to a standard Higgs boson
- The signal is fitted by a sum of Gaussian distributions in each event class (then combined together)

Background Model

CONTINUUM BACKGROUND

Modeled with Bernstein polynomials (order chosen with a p-value test)

DRELL-YAN CONTRIBUTION

- Modeled with a double-sided Crystal Ball (DCB) distribution
- Shape parameters extracted by fitting MC Z
 → ee events passing the whole analysis
 selection (double-fake events)
- Data/MC systematic uncertainty estimated from single-fake Z → ee events

FINAL BACKGROUND MODEL

Bernstein polynomial + double-sided Crystal Ball

- Fitted to the data
- DCB fraction let floating

Results

- No significant excess is observed
- Maximum significance of 1.9 σ (no Look-Elsewhere Effect) at 97.5 GeV, about the same value observed at LEP
- Worse sensitivity around the Z boson mass

Conclusions

- The search for a Higgs boson at low mass values is strongly motivated by theoretical predictions (2HDM, NMSSM)
- The standard H→yy analysis has been extended to the mass range
 [80, 110] GeV, analyzing Run I data collected by CMS
- The low-mass analysis has specific features, in particular the Drell-Yan contribution
- No evidence for new particle has been observed

Looking forward to seeing the results at 13 TeV!

Backup

Mass Resolution

Mass Spectra

Results – ggH + ttH Production Modes

Results – VBF + VH Production Modes

Production Modes

4 PRODUCTION MECHANISMS

Decay Modes

5 MAIN DECAY MODES EXPLOITED:

- H → bb (~58%)
- $H \rightarrow WW \rightarrow 2l_{2v} (\sim 22\%)$
- H → gg (~8.5%)
- H → ττ (~6%)
- $H \rightarrow ZZ \rightarrow 4I (~3\%)$
- H → γγ (~0.2%)