Latest results on $t\bar{t}H (H \to bb)$ production at CMS

Daniel Salerno
on behalf of the CMS Collaboration

EPS HEP 2017
7 July 2017, Venice, Italy
ttH production

Motivation
- Provides a **direct probe** of the important top–Higgs coupling
 - Yukawa coupling $y_t \sim 1$
 - Indirect loop measurements can be influenced by BSM physics
- First measurement of Higgs coupling to up-type fermion
- Non-SM ttH rate could indicate presence of new physics

Properties
- Xsec: 0.5071 pb ±6.8/−9.9%
 - NLO QCD and NLO EW accuracy
- **Expect ~18,000 SM ttH events** in 2016 data at CMS
 - ~ 36 fb$^{-1}$
- LO Feynman diagram:
ttH, H → bb

Comments

- Largest Higgs branching ratio
- Pure fermion production and decay
- Complicated final state
 - Large object combinatorics
- Large backgrounds
- Irreducible tt+bb background is not accurately known
 - Large theoretical uncertainties

Feynman diagram

```
g --t --W --H --b
/g /q,\ /q,\ /q,\ /q,\ /b /b
```

EPS HEP 2017 – Daniel Salerno
Overview of analyses

Leptonic analysis
- ttH(bb) events with 1/2 leptons
 - One or two leptonically decaying tops
 - Muons or electrons
 - Kills QCD multijet background
- Categorize events based on jet and b-jet multiplicity
- Uses BDTs and MEM as final discriminants
- Completed with 12.9 fb⁻¹ at 13TeV
 - CMS PAS HIG-16-038

Presented here today

Fully hadronic final state
- All hadronic ttH(bb) decay provides access to large number of events
 - BR AH = 46%
- Fully reconstructed final state
 - 8 jets: 4 b-jets and 4 light-jets
- Large QCD background
Data and event selection

- **Triggers:**
 - Single / double lepton (μ, e) triggers

- **Signal / background:**
 - All simulated samples with corrections
 - Powheg Box V2 + Phythia 8 for signal and $tt+$jets

- **Jets:** anti-k_T ($R=0.4$)
 - Lepton+jets: ≥ 4, $p_T > 30$ GeV
 - Dilepton: ≥ 2, $p_T > 30$ (20 subleading) GeV

- **Leptons:**
 - Leptons+jets: 1 $\mu(e)$, $p_T > 25(30)$ GeV
 - Dilepton: 2 OS μ/e, $p_T > 25, 15$ GeV

2012 data: 19.5 fb$^{-1}$ at 8 TeV
CMS-PAS-HIG-13-019 / EPJC 75 (2015) 251

2015 data: 2.7 fb$^{-1}$ at 13 TeV
CMS-PAS-HIG-16-004

2016 data: 12.9 fb$^{-1}$ at 13 TeV
CMS-PAS-HIG-16-038
Event categories

Lepton+Jets Channel
- ≥ 6 jet, ≥ 4 b-tags: $S/B=0.035$, $S/N=0.973$
- ≥ 6 jets, ≥ 3 b-tags: $S/B=0.011$, $S/N=0.895$
- 4 jets, 4 b-tags: $S/B=0.015$, $S/N=0.242$
- 5 jets, ≥ 4 b-tags: $S/B=0.024$, $S/N=0.532$

Dilepton Channel
- ≥ 4 jets, ≥ 4 b-tags: $S/B=0.040$, $S/N=0.417$
- ≥ 4 jets, ≥ 3 b-tags: $S/B=0.012$, $S/N=0.453$
- 3 jets, 3 b-tags: $S/B=0.004$, $S/N=0.084$

CMS Simulation
ttH vs. tt+jets: BDT discrimination

Overview

- Stochastic Gradient Boost method
- Separate training in each category (total 7 BDTs)
 - ttH vs. tt+jets (50% events for training, 50% for analysis)
 - Different input variables for each category
- Particle Swarm algorithm
 - Variable selection and tree architecture
BDT: example input variables

Lepton+Jets

Dilepton

EPS HEP 2017 – Daniel Salerno
ttH vs. tt+bb: Matrix Element Method

Overview

- Provides optimal separation of signal and background
- Avoids wrong object assignment (sums over all combinations)
- Calculates the probability of an event being signal/background

Final discriminant

\[P_{sb} = \frac{w_S}{w_S + k_{sb}w_B} \]
MEM discriminant

- Measured kinematical variables (y) used as input
 - Integration over poorly measured/missing variables (E_{jet}, neutrino direction)
- Sum over all possible permutations of object–particle matching

\[
 w_i(y) = \frac{1}{\sigma_i} \sum_{\text{perm}} \int_\Omega d\mathbf{x} \int dx_a dx_b \Phi(x_a, x_b) \delta^4 \left(x_a P_a + x_b P_b - \sum p(x) \right) |\mathcal{M}_i(x)|^2 W(y|x)
\]

- Ω = phase space volume of final particles \mathbf{x}
- $x_{a,b}$ = parton momentum fraction
- Φ = parton flux factor
- \mathcal{M}_i = LO scattering amplitude of process i ($i = \text{ttH, tt+bb}$)
- W = transfer function: probability of measuring y given \mathbf{x}
- σ_i = normalisation factor such that $\int w_i(y) dy = 1$

Comparison to BDT
- No training => needs fewer MC statistics
- Easier interpretation
- Longer computation per event

EPS HEP 2017 – Daniel Salerno
Subdivide each category into high/low BDT regions
- Take median of signal BDT score
 - Ensures sufficient events
- Optimal signal/background separation

Fit MEM discriminant
- Low BDT regions constrain backgrounds and systematics
- High BDT is signal enhanced
Subdivide each category into high/low BDT regions

Fit MEM discriminant
- Except 3 jet category (fit BDT discriminant)
 - Large number of events => better BDT training
Systematic uncertainties

- **Shape uncertainties**
 - Jet energy scale (JES)
 - Jet energy resolution (JER)
 - B-tag discriminator scale factors
 - Lepton ID/isolation
 - Trigger efficiency
 - Pile up uncertainty
 - Q^2 scale

- **Rate uncertainties**
 - tt+hf normalisation
 - PDF uncertainty
 - Parton shower scale
 - Luminosity

- **MC statistics uncertainties**

 Correction applied to reconstructed jet \(p_T \) in order to predict particle jet \(p_T \)
 - Depends on difference between reconstructed jet and generator jet \(p_T \)
 - Data / MC difference in b-tagging efficiency
 - Data / MC differences (\(\mu \) and e specific)
 - Minimum bias (p-p) cross section uncertainty
 - Renormalization and factorization scale for tt+jets
 - tt+bb, tt+2b, tt+b and tt+cc cross section uncertainty
 - gg, gg ttH, qq and qg initiated processes
 - tt+jets ISR/FSR uncertainty
 - LHC integrated luminosity uncertainty
 - Bin-by-bin
Pre-fit event yields

CMS Preliminary

12.9 fb⁻¹ (13 TeV)

- lepton+jets pre-fit expectation: 74 ± 10
- 4.0 ± 0.7
- 12 ± 2
- 27 ± 6

Data/Bkg.

<table>
<thead>
<tr>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥6j,3b</td>
<td></td>
</tr>
<tr>
<td>4j,4b</td>
<td></td>
</tr>
<tr>
<td>5j, ≥4b</td>
<td></td>
</tr>
</tbody>
</table>

CMS Preliminary

11.4 - 12.9 fb⁻¹ (13 TeV)

- dilepton pre-fit expectation: 1.8 ± 0.4
- 17 ± 3
- 4.4 ± 1.3

Data/Bkg.

<table>
<thead>
<tr>
<th>3j,3b</th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>≥4j,3b</td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥4j, ≥4b</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

EPS HEP 2017 – Daniel Salerno
Post-fit event yields

CMS Preliminary

Events

- **12.9 fb\(^{-1}\) (13 TeV)**

Data/Bkg.

<table>
<thead>
<tr>
<th></th>
<th>Lo</th>
<th>Hi</th>
</tr>
</thead>
<tbody>
<tr>
<td>3j,3b</td>
<td>≥4j,3b</td>
<td>≥4j, ≥4b</td>
</tr>
</tbody>
</table>

Negative best-fit signal strength!
Final fit

- Combined fit across all categories
 - Binned maximum-likelihood
 - Considers all systematic uncertainties
- Systematics constrained

Lepton+Jets 5j, ≥4b
High BDT

Dilepton ≥4j, 3b
High BDT

Pre-fit vs Post-fit
Final results

11.4 - 12.9 fb$^{-1}$ at 13 TeV:

Obs. (Exp.) limit: 1.5 (1.7) x SM

Best fit $\mu = \sigma/\sigma_{\text{SM}} = -0.2 \pm 0.8$

1.5 sigma below SM expectation

Comparison to previous results

19.5 fb$^{-1}$ at 8 TeV:

Obs. (Exp.) limit
BDT: 5.2 (4.1) CMS-PAS-HIG-13-019
Matrix Element: 4.2 (3.3) EPJC 75 (2015) 251

2.7 fb$^{-1}$ at 13 TeV:

Obs. (Exp.) limit: 2.6 (3.6) x SM
Best fit $\mu = \sigma/\sigma_{\text{SM}} = -2.0 \pm 1.8$

CMS-PAS-HIG-16-004
What’s next?

New results with $\sim 36 \text{ fb}^{-1}$ coming soon!
- Full 2016 dataset

Future efforts being considered
- New machine learning techniques
- Re-incorporate boosted topologies (used in 2015)
 - Lower combinatorics
 - Different systematics
 - Good for high-lumi
- Better handle on systematics
- Constrain $t\bar{t}+hf$ uncertainty
 - Better cross section measurements and calculations

Stay tuned!
Conclusion

Summary
- **Strong results with only partial dataset (up to 12.9 fb\(^{-1}\))**
 - Observed (expected) 95% CL limit: 1.5 (1.7)
 - Best fit \(\mu = -0.2 \pm 0.8\)
- **Solid trend of improving performance**
 - \(2012 \rightarrow 2015 \rightarrow 2016\) part: 4.1/3.3 \rightarrow 3.6 \rightarrow 1.7 (expected limit)
- **Systematics becoming dominant**
 - Already contribute 60% to total uncertainty on best-fit-\(\mu\)
 - Long term efforts to constrain dominant systematics

Outlook
- **New results for the leptonic and fully hadronic analyses**
 - How important will the systematic uncertainties be?
- **Combination with other ttH analyses**
 - Overall 5 sigma significance?
 - Or observation of new physics?

See talk by Saranya Ghosh
Backup
Triggers

Lepton+jets

<table>
<thead>
<tr>
<th>Dataset</th>
<th>Trigger Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>SingleMu</td>
<td>HLT_IsoMu22_v*</td>
</tr>
<tr>
<td>SingleMu</td>
<td>HLT_IsoTkMu22_v*</td>
</tr>
<tr>
<td>SingleEle</td>
<td>HLT_Ele27_eta2p1_WPTight_Gsf_v*</td>
</tr>
</tbody>
</table>

Dilepton

<table>
<thead>
<tr>
<th>Channel</th>
<th>Trigger Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mu^+\mu^-$</td>
<td>HLT_Mu17_TrkIsoVVL_TkMu8_TrkIsoVVL_v*</td>
</tr>
<tr>
<td>$\mu^+\mu^-$</td>
<td>HLT_Mu17_TrkIsoVVL_Mu8_TrkIsoVVL_v*</td>
</tr>
<tr>
<td>e^+e^-</td>
<td>HLT_Ele23_Ele12_CaloIdL_TrackIdL_IsoVL_DZ_v*</td>
</tr>
<tr>
<td>$\mu^\pm e^\mp$</td>
<td>HLT_Mu23_TrkIsoVVL_Ele12_CaloIdL_TrackIdL_IsoVL_v*</td>
</tr>
<tr>
<td>$\mu^\pm e^\mp$</td>
<td>HLT_Mu8_TrkIsoVVL_Ele23_CaloIdL_TrackIdL_IsoVL_v*</td>
</tr>
</tbody>
</table>
Particle Swarm algorithm

- An optimization algorithm
- Different BDT settings (i.e. tree structure and variables) form the search-space
 - A specific setting corresponds to one point in this search space

Algorithm

- Create a swarm of candidate BDTs
- Initialize each BDT with a random set of input variables and a random position in parameter-space
- Do N iterations
 - Repeatedly train/test at current position
 - Vary input variables to maximize ROC while KS>threshold
- Then the BDTs move to new positions, based on their own position and the swarm’s best previous position

BDT input variables

Lepton+jets

<table>
<thead>
<tr>
<th>Object and event kinematics</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p_T^{\text{jet}})</td>
<td>Transverse momentum of (i)-th jet, jets ordered in (p_T)</td>
</tr>
<tr>
<td>HT</td>
<td>Scalar sum of transverse momenta for all jets with (p_T > 30 \text{ GeV/c})</td>
</tr>
<tr>
<td>MET</td>
<td>Missing transverse energy</td>
</tr>
<tr>
<td>(\sum \Delta p_T^{\text{jet}, \text{lepton}, \text{MET}})</td>
<td>Sum of the (p_T) of all jets, leptons, and MET</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Invariant mass of the 4-vector sum of all jets, leptons, and MET</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Average (\Delta \eta) between b-tagged jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Average (\Delta \eta) between jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Maximal (\Delta \eta) between any jet and the average (</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Maximal (\Delta \eta) between any b-tagged jet and the average (</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{jet}, \text{lepton}})</td>
<td>Maximal (\Delta \eta) between any b-tagged jet and the average (</td>
</tr>
<tr>
<td>(\Delta R^{\text{tag}, \text{tag}})</td>
<td>Average (\Delta R) between the two closest b-tagged jets</td>
</tr>
<tr>
<td>(</td>
<td>\Delta R^{\text{tag}, \text{tag}}</td>
</tr>
<tr>
<td>(M_{\text{min}})</td>
<td>Invariant mass of the two b-tagged jets that are closest in (\Delta R)</td>
</tr>
<tr>
<td>(M_{\text{max}})</td>
<td>Invariant mass of the two b-tagged jets with an invariant mass closest to (125 \text{ GeV/c}^2)</td>
</tr>
<tr>
<td>(M_1)</td>
<td>A minimum-chi-squared fit to event kinematics is used to select two b-tagged jets as top-decay products. Of the remaining b-tagged jets, the invariant mass of the two with highest (E_T) is saved as this quantity</td>
</tr>
<tr>
<td>(\sqrt{\Delta \eta^{\text{bb}}}, \Delta \eta^{\text{bb}})</td>
<td>Square root of the product of (</td>
</tr>
<tr>
<td>(\Sigma)</td>
<td>Ratio of the likelihood that the transverse momentum of all jets and the sum of the energies of all jets</td>
</tr>
<tr>
<td>CSVv2 b-tag</td>
<td>First- to fifth-highest b-tag discriminant value of all jets</td>
</tr>
<tr>
<td>CSVv2 b-tag</td>
<td>Average b-tag discriminant value of all b-tagged jets</td>
</tr>
<tr>
<td>CSVv2 b-tag</td>
<td>Squared difference between the b-tag discriminant value of a given b-tagged jet and the average CSVv2 discriminant value of all b-tagged jets, summed over all b-tagged jets</td>
</tr>
<tr>
<td>CSVv2 b-tag</td>
<td>Ratio of the likelihood that the event contains four b-jets to the likelihood that it contains two b-jets. The likelihoods are constructed from the b-tag discriminant, the (p_T) and the (\eta) of the jets.</td>
</tr>
</tbody>
</table>

Dilepton

<table>
<thead>
<tr>
<th>Event variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>((\Delta \eta^{\text{tag}, \text{tag}}))</td>
<td>Average (\Delta \eta) between b-tagged jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Sum of the (p_T) of all jets and leptons</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Twisted angle between jet pair</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>(\Delta \eta) between the two closest b-tagged jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>(\Delta \eta) between the two furthest b-tagged jets</td>
</tr>
<tr>
<td>(M_{\text{min}})</td>
<td>Invariant mass of jet pair with minimum (\Delta R)</td>
</tr>
<tr>
<td>(M_{\text{max}})</td>
<td>Invariant mass of a jet pair ordered in closeness to the Higgs mass</td>
</tr>
<tr>
<td>(M_{\text{b-tag}, \text{b-tag}})</td>
<td>Mass of b-tagged jet pair with minimum (\Delta R)</td>
</tr>
<tr>
<td>(M_{\text{min}})</td>
<td>Sum of the (p_T) of b-tagged jet pair with minimum (\Delta R)</td>
</tr>
<tr>
<td>(</td>
<td>\Delta \eta^{\text{tag}, \text{tag}}</td>
</tr>
<tr>
<td>(</td>
<td>\Delta \eta^{\text{tag}, \text{tag}}</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Scalar sum of transverse momentum for all jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>(\Delta \eta) between the two closest jets</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Median invariant mass of all combinations of jet pairs</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Mass for b-tagged jet pair with maximum invariant mass combination</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Average (\Delta \eta) between jets (with at least one b-tagged jet)</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Sum of the (p_T) of jet pair with minimum (\Delta R) (with at least one b-tagged jet)</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Twisted angle between jet pair (with at least one b-tagged jet)</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Invariant mass of the 3-jet system with the largest transverse momentum</td>
</tr>
<tr>
<td>(\Delta \eta^{\text{tag}, \text{tag}})</td>
<td>Invariant mass of a jet pair (with at least one b-tagged jet) ordered in closeness to the Higgs mass</td>
</tr>
</tbody>
</table>

Event shape

- Sphericity
- Aplanarity
- \(H_{1-4} \)

Fox-Wolfram moments

\[
3 (\lambda_1 \lambda_2 + \lambda_1 \lambda_3 + \lambda_2 \lambda_3) [80]
\]
BDT variables by category

Lepton+jets

<table>
<thead>
<tr>
<th>4 jets, 4 tags</th>
<th>5 jets, ≥ 4 tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
</tr>
<tr>
<td>avg. CSVv2 of b-tagged jets</td>
<td>avg. CSVv2 of b-tagged jets</td>
</tr>
<tr>
<td>aplanarity (H_3)</td>
<td>aplanarity (H_3)</td>
</tr>
<tr>
<td>((\sum p_T(\text{jet})) / (\sum E(\text{jet})))</td>
<td>((\sum p_T(\text{jet})) / (\sum E(\text{jet})))</td>
</tr>
<tr>
<td>(M_2) of min (\Delta R(\text{tag, tag}))</td>
<td>(M_2) of min (\Delta R(\text{tag, tag}))</td>
</tr>
<tr>
<td>≥ 6 jets, 3 tags</td>
<td>≥ 6 jets, ≥ 4 tags</td>
</tr>
<tr>
<td>aplanarity (\sqrt{\Delta \eta(t^{\text{lep}}, bb) \times \Delta \eta(t^{\text{had}}, bb)})</td>
<td>best Higgs mass</td>
</tr>
<tr>
<td>((\sum p_T(\text{jet})) / (\sum E(\text{jet})))</td>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
</tr>
<tr>
<td>(\text{min} \Delta R(\text{tag, tag}))</td>
<td>(\text{min} \Delta R(\text{tag, tag}))</td>
</tr>
<tr>
<td>2nd moment of b-tagged jets’ CSVv2</td>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
</tr>
<tr>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
<td>(\sum p_T(\text{jets, lepton, MET}))</td>
</tr>
<tr>
<td>b-tagging likelihood ratio</td>
<td>b-tagging likelihood ratio</td>
</tr>
</tbody>
</table>

Dilepton

<table>
<thead>
<tr>
<th>3 jets, 3 tags</th>
<th>≥ 4 jets, 3 tags</th>
<th>≥ 4 jets, ≥ 4 tags</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\langle d \rangle_{\text{tagged}})</td>
<td>Centrality(jets & leptons)</td>
<td>Centrality(tags)</td>
</tr>
<tr>
<td>(H_1(\text{jets}))</td>
<td>C(jets)</td>
<td>(H_T^{\text{tags}})</td>
</tr>
<tr>
<td>(M_{\text{higgs-like}})</td>
<td>(H_2(\text{tags}))</td>
<td>(M_{\text{higgs-like}})</td>
</tr>
<tr>
<td>(M_{\text{tag, tag}}^{\text{max mass}})</td>
<td>(M_{\text{j}, \text{j}, \text{jet}}^{\text{max }})</td>
<td>(M_{\text{j}, \text{j}, \text{jet}}^{\text{max }})</td>
</tr>
<tr>
<td>(\text{min} \Delta R_{\text{tag, tag}})</td>
<td>(M_{\text{min} \Delta R}^{\text{tag, tag}})</td>
<td>(M_{\text{min} \Delta R}^{\text{tag, tag}})</td>
</tr>
<tr>
<td>(\text{max} \Delta \eta_{\text{jet, jet}})</td>
<td>(M_{\text{tag, tag}}^{\text{max mass}})</td>
<td>(\text{max} \Delta \eta_{\text{jet, jet}})</td>
</tr>
<tr>
<td>(\sum p_T(\text{jets, leptons}))</td>
<td>(\text{median} M_{\text{j}, \text{j}, \text{jet}})</td>
<td>median (M_{\text{j}, \text{j}, \text{jet}})</td>
</tr>
<tr>
<td>(H_4 / H_0(\text{tags}))</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Extra variables: Lepton+Jets
Extra variables: Dilepton
Lepton+Jets pre-fit discriminant
Dilepton pre-fit discriminant

3j,3b
BDT only

Low BDT

≥4j,3b
MEM discriminant

High BDT

≥4j,≥4b
MEM discriminant
Lepton+Jets post-fit discriminant

CMS Preliminary data (Run 2016)

4 jets, 4 b-tags
BDT>0.26

5 jets, 4 b-tags
BDT>0.26

≥6 jets, 3 b-tags
BDT>0.26

≥6 jets, 4 b-tags
BDT>0.26

Low BDT

High BDT

Data/Bkg.

Events

MEM discriminant

CMS

Preliminary

4j,4b

5j,≥4b

≥6j,3b

≥6j,≥4b

EPS HEP 2017 – Daniel Salerno

28
Dilepton post-fit discriminant

3j,3b
BDT only

Low BDT

High BDT
High BDT categories provide best sensitivity (as expected)
Yields from the bins of the final discriminants plotted in terms of pre-fit S/B

Standard model signal expectation

Fitted signal

Fitted background

11.4 – 12.9 fb$^{-1}$ (13 TeV)

CMS Preliminary

- data
- \(\tilde{t}\tilde{H} (\mu_{SM} = 1.0) \)
- \(\tilde{t}\tilde{H} (\mu = -0.19) \)
- Background
- Bkgd. Unc
Run I results

Analysis overview

- Major backgrounds: tt+jets (including tt+bb), single-top, V+jets, VV, tt+V (simulated)
- 1 or 2 opposite sign leptons
- At least 4 (l+jets) or 3 (DL) jets
 - Including at least 2 b-tags
 - Boosted top and Higgs in Run II
- Several event categories
 - Based on N_{jets} and N_{b-jets}
- Major systematics: JES, b-tagging, theory uncertainty on tt+hf
- BDT and Matrix Element discriminants used separately

Results: 19.5 fb^{-1}

- **BDT**
 - Post-Fit (S+B)
 - [8 TeV, L = 19.5 fb^{-1}]

- **Matrix Element**

Best fit \(\mu = 0.9 +2.5/-2.4 \)

Best fit \(\mu = 1.2 +1.6/-1.5 \)
Run II results

Analysis overview
- 2 channels: SL and DL
- BDT and Matrix Element discriminants combined

Results: 2.7 fb⁻¹

Lepton+Jets
- 1 lepton, all jets, 3 b-tags
- BDT > 0.1

Dilepton
- 2D MEM discriminant
- Boosted top and Higgs

Data/MC
- 33
- 2.7 fb⁻¹ (13 TeV)

Obs. (Exp.): 2.6 (3.6)

95% CL limit on $\mu = \alpha/\alpha_{SM}$ at $m_H = 125$ GeV