

EPS-HEP Venice 2017

Extending the gravitational waves searches for black holes with intermediate masses and residual eccentricity at merger

Shubhanshu Tiwari for the LIGO Scientific and the VIRGO collaborations

Outline

- * Searches for gravitational waves from Binaries Black-Holes (BBHs)
 - Modelled search
 - Un-Modelled search
- Limitations of modelled searches for BBHs
 - * Effect of eccentricity on BBH searches
- * Un-modelled searches for BBHs
- Search for eBBH
- * Search for Intermediate mass BHs

Searches for gravitational waves from Binaries Black-Holes (BBHs)

- We now know that BBHs exists in nature and merge in Hubble time
- * Till now we have detected 3 confirmed BBHs mergers GW150914, GW151226 and GW170104 and one lower significance event LVT151012
- * This provides motivation to search for BBHs from all possible formation channels, some of the formation channels predict binaries with eccentricities (e>0.1) in LIGO band (like dynamical capture in dense stellar environments, three body interaction etc) or binaries with intermediate mass (>100 M_sun) companion
- * The searches for BBHs can be divided into
 - * Modelled search
 - Un-Modelled search

Modelled search for Binary Black holes

Modelled search

- * Uses **matched-filtering** to search for BBH signals in the data
- Looks for the correlation between the data and various waveforms models called templates
- * The goal is to find the optimal template which would maximise the **signal to noise ratio** (SNR)
- The signal consistency check is performed by a chi-squared test
- * Search is optimal if the signal is within the parameter space of the templates used

Modelled search for Binary Black holes

- * The four-dimensional search parameter space (component masses and spins) covered by the template bank shown projected into the component-mass plane.
- * The colours indicate mass regions with different limits on the dimensionless spin parameters $\chi 1$ and $\chi 2$.
- * Although this template bank covers a huge part of the parameter space and most likely BBHs signals, it assumes
 - circular orbits (no eccentricity)
 - * no contribution from higher modes (can be important in high mass ratio systems)
 - only aligned spin (no precession)
- * Note: the template bank for BBHs search is an evolving process and it keep on expanding like our universe

LVC arXiv:1606.04856 (2016) O1 BBH

Un-modelled searches for BBHs

Un-modelled search

- * Uses the estimation of excess energy in the detectors
- * Exploits the presence of signal (energy) in multiple detectors to appear coherently i.e. consistent in time and sky location
- Data is combined from the networks of detectors
- No templates/waveforms models are required/used
- * Can be more affected by the non-gaussian glitches in the data than the modelled search, and hence are not the optimal searches
- * This search can be made more sensitive for BBHs by tuning the clustering and requiring some lose and generic condition on the signal model, and hence rejecting background

 $Likelihood\ 2193-dt(ms)\ [7.8125:500]-df(hz)\ [1:64]-npix\ 34$

Limitations of modelled searches for BBHs

- * As preluded before, the modelled searches don't (yet) cover the part parameter space such as
 - eccentricity in the sensitivity band
 - higher harmonics contributions
 - precession of the orbit
- * Also there can be more exotic scenarios like
 - third body interaction
 - * BH mimickers etc
- * In these situations un-modelled searches for the BBHs will complement modelled searches
- * Next: we provide an example for the effect of eccentricity on circular templates

Gravitational waves from eccentric BBH

- Binaries with orbital eccentricity will have periastron advance, this feature is translated as the phase modulation in the GWs waveform
- The waveform are shorter in time, i.e. time to merge is smaller as the eccentricity increases
- The relative power in the higher harmonics are proportional to the eccentricity

Peter Mathews (1964) PRL

Effect of eccentricity on the templated search for BBHs

- The circular template bank are not a good match for the binary neutron star (BNS) having eccentricity, e > 0.05 <u>Huerta, E. A. and Brown, Duncan A. PRD (2013)</u> plot on the right shows the fitting factor (FF) as a function of eccentricity for BNS
- Bottom right we do the same for the **BBH**, we can conclude for ~ e > 0.2 the FF falls below 0.9 (this is done with the inspiral only waveform and templates)
 <u>Tiwari et al in preparation</u>, full inspiral merger ringdown models are not available yet
- Fitting factor is the measure of how much waveform accuracy contributes to the collection of optimal SNR
- Hence, searching for eBBH with the circular template bank will be quite suboptimal
- For such scenarios un-modelled search targeted for BBHs can complement the modelled searches

$$\mathcal{FF} = \max_{b \in \text{bank}} \mathcal{O}(h^e, h_b^T)$$

Search for BBH using un-templated analysis: eBBH

- Search for eBBH is done using unmodelled search, which requires no templates
 - the efficiency of this algorithm is invariant of the eccentricity
- If detected such sources can enrich our understanding of the dense stellar environments and formation channels of BBH
- * The results for the early LIGO -VIRGO sensitivity have been published and upper limits were obtained
- * We are working on the results of the search for advanced LIGO first and second observing run

Search for BBH using un-templated analysis: IMBHB

- * Search for Intermediate mass BBH is done using both the methods
 - * Modelled search: using inspiral merger ringdown template bank with aligned spins till total mass between 50-600 M_sun and effective spins -0.99 and 0.99 and mass ratio less extreme than 1:10
 - * Un-modelled search tuned in the parameter space of IMBHB (lower frequency, requires signal to be chirping up etc)
- * The results for this search for the first observing run of the LIGO detectors is now published, the highlights are
 - * There were no GWs found from IMBHB
 - * The rate upper limit at 90% confidence was found to be 0.93 for 100-100 M_sun at 0.8 aligned effective spin

Rate upper limit

Conclusion

- * Un-modelled searches are complementary to the modelled searches for BBHs and can potentially help to extend the search parameter space
- Un-modelled searches found BBH like GW150914 and GW170104 with high significance (although lower than the modelled search)
- * Some of the interesting formation channels can predict binaries with parameters such eccentricity, extreme precession etc where where un-modelled searches play an important role