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Higgs Inflation in SUGRA Inflation Analysis Results Conclusions

General Framework

SUGRA (i.e. Supergravity) Potential

• The General Einstein Frame Action For The Scalar Fields zα Plus Gravity In Four Dimensional, N = 1 SUGRA is:

S =

∫
d4 x

√
−ĝ

(
−

1
2
R̂ + Kαβ̄ĝ

µνDµzαDνz∗β̄ − V̂
)

WhereWe Use UnitsWith mP=1.

Also K is The Kähler Potential With Kαβ̄ =
∂2K

∂zα∂z∗β̄
> 0 and K β̄αKαγ̄ = δ

β̄
γ̄; Dµzα = ∂µzα + igAa

µT a
αβzβ, Where

Aa
µ is The Vector Gauge Fields and Ta are the Generators of the Gauge Transformations Of zα; Finally, V̂ = V̂F + V̂D With

V̂F = eK
(
Kαβ̄FαF∗

β̄
− 3|W |2

)
WithW The Superpotential and Fα = W,zα + K,zαW; V̂D =

1
2
g2D2

a with Da = zα (Ta)αβ K,zβ .

•We Concentrate on Higgs Inflation (HI) Driven by V̂F SinceWe Can Easily Assure V̂D = 0 During HI.

Therefore, HI Within SUGRA Requires The Appropriate Selection of the Functions W and K

• Difficulties And PossibleWays Out

• The η Problem. Coefficients of Order Unity in K May Spoil The Flatness of VF Due To The Factor eK . This Can Be
Evaded IfWe Impose A Shift Symmetry so That K = K(Φ − Φ∗) = K(Im(Φ)) and the Inflaton be φ =

√
2Re(Φ).

• The Runaway Problem. The Term −3|W |2 May Render V̂F Unbounded From Below. To Avoid ThisWe May Adopt a W
Where the Inflaton is MultipliedWith A Stabilizer Field S Which Has To Be Stabilized At Zero During Inflation.

• Complementarily, From Models of non-Minimal Chaotic Inflation (nMI) in SUGRA We know that V̂F is Sufficiently Flat, If
We Adopt K = −N ln (1 + cR(Φn + Φ∗n)) + · · · and Tune N > 0 and n With The Exponent m of Φ in W = λS Φm. E.g.,

If we Select W = λS Φ2 and K = −2 ln
(
1 + 2cR(Φ2 + Φ∗2)

)
− (Φ − Φ∗)2/2 + |S |2

We Obtain V̂F = eK KS S ∗
∣∣∣W,S

∣∣∣2 = λφ4/4(1 + cRφ2)2 ∼ const for cR � 1 .

HowWe can Apply These General Ideas to HI?
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−ĝ

(
−

1
2
R̂ + Kαβ̄ĝ
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InflatingWith a Superheavy Higgs

Selecting Conveniently the Superpotential and Kähler Potentials

•We Use 3 Superfields z1 = Φ, z2 = Φ̄, Charged Under a Local Symmetry, e.g. U(1)B−L, and z3 = S (“Stabilizer” Field).
• Superpotential W = λS

(
Φ̄Φ − M2/4

)
• W Is Uniquely Determined Using U(1)B−L and an R Symmetry
and Leads to a Grand Unified Theory (GUT) Phase Transition

At The SUSY Vacuum 〈S 〉 = 0, |〈Φ〉| = |〈Φ̄〉| = M/2,

Charge Assignments
Superfields: S Φ Φ̄

U(1)R 1 0 0
U(1)B−L 0 1 −1

Since in The SUSY Limit, After HI, We Get VHI ∼ λ
2
∣∣∣ΦΦ̄ − M2/4

∣∣∣2 + λ2 |S |2(|Φ|2 + |Φ̄|2) + D − terms.

• Possible Kähler Potentials – Softly Broken Shift Symmetry For Higgs Fields

• The Shift Symmetry Can Be Formulated By The Functions F± =
∣∣∣Φ ± Φ̄∗

∣∣∣2 With Coefficients c+ and c−, c+ ≤ c−.
• HI can be Obtained Selecting the Following K’sWhich Are Quadratic and Invariant Under U(1)B−L and R Symmetries:

K1 = −N ln
(
1 + c+F+ + F1S (|S |2)

)
+ c−F− , K2 = −N ln (1 + c+F+) + c−F− + F2S (|S |2),

K3 = −N ln (1 + c+F+) + F3S (F−, |S |2) WhereWe Choose The Functions1

F1S =

{
− ln(1 + |S |2/N)
exp

(
−|S |2/N

)
− 1 , F2S =

NS ln(1 + |S |2/NS )

−NS

(
e−|S |

2/NS − 1
) And F3S =

NS ln(1 + c−F−/NS + |S |2/NS )

−NS

(
e−(c−F−/NS +|S |2/NS ) − 1

) With N,NS > 0

Since the Simplest Kinetic Term for S , |S |2, Leads to m2
S < 0 or m2

S < Ĥ2
HI Along the Inflationary Path.

• For c+ � c−, Our Models are Completely Natural, Because The Theory Enjoys The Following Enhanced Symmetries:

Φ̄→ Φ̄ + c∗, Φ→ Φ + c (c ∈ C) and S → eiαS , in the Limits c+ → 0 & λ→ 0 .

• The Free Parameters, For Fixed n, are r± = c+/c− and λ/c− (not c+, c− and λ) Since IfWe Perform the Rescalings

Φ→ Φ/
√

c−, Φ̄→ Φ̄/
√

c−, and S → S , we see That W Depends on λ/c− and K on r± .

1C.P. and N. Toumbas (2016, 2017).
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InflatingWith a Superheavy Higgs

Inflationary Potential

• IfWe Use The Parametrization Φ =
1
√

2
φeiθ cos θΦ and Φ̄ =

1
√

2
φeiθ̄ sin θΦ With 0 ≤ θΦ ≤

π

2
and S =

1
√

2
(s + is̄)

We Can Show That A D-Flat Direction Is θ = θ̄ = s = s̄ = 0 and θΦ = π/4 (: I)

• The Only Surviving Term of V̂F Along the Path in Eq. (I) is

V̂HI = eK KS S ∗ |W,S |
2 =

λ2(φ2 − M2)2

16 f 2(1+n)
R

With fR = 1 + c+φ
2

Playing The Role Of A Non-Minimal Coupling to Gravity. Also,

n =

{
(N − 3)/2
N/2 − 1 and KS S ∗ =

{
fR
1 for

{
K = K1
K = K2,3

• For n > 0, V̂HI Develops A Local Maximum

V̂HI(φmax) =
λ2n2n

16c2
+(1 + n)2(1+n)

at φmax =
1
√

c+n 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
0.0

0.5

1.0

1.5

2.0

, ,  φ
, ,  φ

f

   n       λ / 10-3

- 0.1       7.75
   0         6.64
   0.1      5.3
   r

+
 = 0.03

 

 

V
H

I (
10

- 
9 )

φ

  

>

*

_

φ
max

• The EF Canonically Normalized Fields, Which Are Denoted By Hat, Can Be Obtained As Follows:

dφ̂
dφ

= J =
√
κ+, θ̂+ =

Jφθ+
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Inflationary Potential
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InflatingWith a Superheavy Higgs

Stability and Radiative Corrections
The Mass Spectrum Along The Inflationary Trajectory

Fields Eingestates Masses Squared

K = K1 K = K2 K = K3

2 Real Scalars θ̂+ m̂2
θ+ 6Ĥ2

HI 6(1 − 1/NS )Ĥ2
HI

θ̂Φ m̂2
θΦ

M2
BL + 6Ĥ2

HI M2
BL + 6(1 − 1/NS )Ĥ2

HI

1 Complex Scalar ŝ,̂̄s m̂2
s 6c+φ

2Ĥ2
HI/N 6Ĥ2

HI/NS

1 Gauge boson ABL M2
BL g2c− (1 − Nr±/ fR) φ2

4 Weyl Spinors ψ̂± m̂2
ψ± 6(c+(N − 3)φ2 − 2)2Ĥ2

HI/c−φ
2 f 2
R

6(c+(N − 2)φ2 − 2)2Ĥ2
HI/c−φ

2 f 2
R

λBL, ψ̂Φ− M2
BL g2c− (1 − Nr±/ fR) φ2

• ∀α, m̂2
χα

> 0. Especially m̂2
s > Ĥ2

HI ⇔ 0 < N < 6 for K = K1 and 0 < NS < 6 for K = K2,3;

• ∀α, m̂2
χα

> Ĥ2
HI and So Any Inflationary Perturbations Of The Fields Other Than The Inflaton Are Safely Eliminated;

• MBL , 0 Signals The Fact That U(1)B−L Is Broken During non-MHI;
• The One-Loop Radiative Corrections à la Coleman-Weinberg to V̂HI Have The Form:

∆V̂HI =
1

64π2

m̂4
θ+ ln

m̂2
θ+

Λ2 + 2m̂4
s ln

m̂2
s

Λ2 − 4m̂4
ψ±

ln
m̂2
ψ±

Λ2

 Where

• M2
BL > m2

P and m̂2
θΦ

> m2
P Are not Taken Into Account;

• Λ ' (1 − 5) · 1014 is A Renormalization Group Mass Scale Determined By Requiring ∆V̂HI(φ?) = 0 or ∆V̂HI(φf ) = 0.
As a Consequence, ∆V̂HI Has No Significant Effect On The Results.
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Inflationary Observables

Approximating the Inflationary Dynamics

• The Slow-Roll Parameters Are Determined Using the Standard Formulae Employing The Canonically Normalized φ̂:

ε̂ =
1
2

 V̂HI,̂φ

V̂HI


2

'
8(1 − nc+φ

2)2

c−φ2 f 2
R

and η̂ =
V̂HI,̂φφ̂

V̂HI
= 4

3 − (3 + 9n)c+φ
2 + n(1 + 4n)c2

+φ
4

c−φ2 f 2
R

·

• The Number of e-Foldings That k? = 0.05 Mpc Experiences During HI Is Calculated to be

N̂? =

∫ φ̂?

φ̂f

dφ̂
V̂HI

V̂HI,̂φ

'

((1 + c+φ
2
?)2 − 1)/16r± for n = 0

−
(
nc+φ

2
? + (1 + n) ln(1 − nc+φ

2
?)

)
/8n2r± for n , 0 .

• There is a Lower Bound on c−, AboveWhich φ? < 1 – and so Terms (Φ̄Φ)l with l > 1 Are Harmless. E.g.,

For n = 0, φ? ≤ 1 ⇒ c− ≥ ( fn? − 1)/r± ' 100, with fn? =
(
1 + 16r±N̂?

)1/2
and N̂? ' 58.

• The Power Spectrum Normalization Implies A Dependence of λ on c− for Every r±√
As =

1

2
√

3 π

V̂HI(φ̂?)3/2

|V̂HI,̂φ(φ̂?)|
=

λ
√

c−
32
√

3π

φ3
? fR(φ?)−n

1 − nc+φ
2
?

⇒ λ = 32
√

3Asπc−r3/2
± f n

n?
n(1 − fn?) + 1
( fn? − 1)3/2 .

• A Clear Dependence of The Observables (Spectral Index ns and Tensor-To-Scalar Ratio, r) On r± and n Arises, I.e.,

ns = 1− 6̂ε? + 2̂η? ' 1− 4n2r± − 2n
r1/2
±

N̂1/2
?

−
3 − 2n

2N̂?

−
3 − n

8(N̂3
?r±)1/2

, r = 16̂ε? ' −
8n

N̂?

+
3 + 2n

6N̂2
?r±

+
6 − n

3(N̂3
?r±)1/2

+
8n2r1/2

±

N̂1/2
?

,

With Negligible ns Running, αs. The VariablesWith Subscript ? Are Evaluated at φ̂ = φ̂?.
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Perturbative Unitarity

Ultraviolet (UV) Cut-off Scale (ΛUV)
• The Implementation Of Our Inflationary ModelWith φ ≤ 1 Requires Relatively Large c−’s. Therefore, We Have To Check
If the Resulting Effective Theory Respects Perturbative unitarity up to mP = 1, Analyzing The Small-Field Behavior2 Of the
Theory. I.e., We Expand About 〈φ〉 = 0 the Action S Along The Inflationary Path

S =

∫
d4 x

√
−̂g

(
−

1
2
R̂ +

1
2

J2φ̇2 − V̂HI0 + · · ·

)
·

• In Particular, We Find 〈J〉 as Follows

J2 =

 dφ̂
dφ

2
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I.E., The First Term Includes the a non-Canonical Kinetic MixingWhereas the Second One is Due to the non-Minimal
Coupling fR. For this Reason, we Call This Model Kinetically Modified non-Minimal HI.

• For r± ≤ 1, We obtain ΛUV = mP Since The Expansions Abound 〈φ〉 = 0 Are Just r± Dependent:
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Consequently, No ProblemWith The Perturbative Unitarity Emerges for r± ≤ 1, Even If c+ and c− Are Large.
• This Has to Be ContrastedWith the Situation in Standard non-Minimal HI Which is Defined for

fK = 1 and fR = 1 + cRφ2 Leading to 〈J〉 = 1 .
This Results to ΛUV = mP/cR � mP For cR > 1 Since The Expansions About 〈φ〉 ' 0 Are cR Dependent, I.e.,
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Where The TermWhich Yields The Smallest Denominator For cR > 1 is 6c2
R
φ̂2.

2J.L.F. Barbon and J.R. Espinosa (2009); C.P. Burgess, H.M. Lee, and M. Trott (2010); A. Kehagias, A.M. Dizgah, and A. Riotto (2013)
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Higgs Inflation in SUGRA Inflation Analysis Results Conclusions

Fitting the Data

Testing Against Observations

• The Combined Bicep2/Keck Array and Planck Results3 Although Do Not Exclude Inflationary ModelsWith Negligible r’s, They
Seem to Favor ThoseWith r’s of Order 0.01 Since

r = 0.028+0.026
−0.025 ⇒ 0.003 . r . 0.054 at 68% c.l. And r ≤ 0.07 at 95% c.l.

• Enforcing N̂? ' 58 and
√

As = 4.627 · 10−5, we Obtain the Allowed Curves [Region] In the ns − r0.002 [n − r±] Plane:
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• For n > 0 [n < 0] The Curves Move To The Left [Right] of the Curve Obtained for n = 0. Therefore the 1-σ
Observationally Favored Range Can Be Covered For Quite Natural r± ’s – e.g. 0.0029 . r± . 0.5 for K = K2 or K3.
• Positivity of κ− Provides an Upper Bound on r± Which is Translated to a Lower Bound on r.
• Fixing ns = 0.968 and Let n VaryWe Find the Allowed Ranges of the Parameters and the Required (Mild) Tuning:

−1.21 . n/0.1 . 0.215, 0.12 . r±/0.1 . 5, 0.4 . r/0.01 . 7 and ∆max? = (φmax − φ?) /φmax & 0.4.
• Special Cases: (n, r±) = (0, 0.015)⇒ (ns, r) = (0.968, 0.043) and (n, r±) = (0.042, 0.025)⇒ (ns, r) = (0.968, 0.028).

3Planck Collaboration (2015); Bicep2/Keck Array and Planck Collaborations (2015)
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Higgs Inflation in SUGRA Inflation Analysis Results Conclusions

Inflation and Grand Unification

Inflaton Mass and Grand Unified Theory (GUT) Scale

• The Inflationary Observables Are Not Affected By M, Provided That M � mP.

•We Can Determine M Demanding That The Gauge Coupling Unification ScaleWithin MSSM (Minimal SUSY Standard
Model) MGUT ' 2/2.433 · 10−2 Is IdentifiedWith The Mass Of the Gauge Boson, MBL, at the Vacuum, I.e.,√

c−(1 − Nr±/〈 fR〉)gM = MGUT ⇒ M ' MGUT/g
√

c− (1 − Nr±) ∼ 1015 GeV with g ' 0.7 (GUT Gauge Coupling).

• Using This, We Obtain for the Inflaton Mass, m̂I =
〈
V̂HI,̂φφ̂

〉1/2
'

λM
√

2c− (1 − Nr±)
=

λMGUT
√

2gc− (1 − Nr±)
= F (n, r±)

E.g., For ns = 0.968 We get 2.4 · 10−2 [2.1 · 10−3] . m̂I/10−5 . 1.5 For K = K1 [K = K2 and K3] .
• Non-Thermal Leptogenesis is Possible IfWe Introduce Suitable Couplings Between Φ And The Right-Handed Neutrinos.

Conclusions

•We Proposed A Variant of non-Minimal HI in SUGRA Which Can Safely Accommodate r’s of Order 0.01.

• The Achieved r’s are Possibly Detectable in the Next Generation ExperimentsWhich Are Expected To Achieve A Precision
For r of the Order of 10−3. E.g., Core+, LiteBird, Bicep3/Keck Array and SPIDER4.

• This Setting can be Elegantly Implemented, Employing a SemiLogarithmic Kähler Potential Which Includes only Quadratic
Terms and the Real Functions F±. On the one Hand, F− Respects a Principal Shift-Symmetry, Remains Invisible in V̂HI and
Dominates J While, on the Other, F+ Can Be Regarded As A Soft Violation of the Shift Symmetry.

• Inflationary Solutions Can Be Attained EvenWith Subplanckian Inflaton Values andWithout Causing Any ProblemWith The
Perturbative Unitarity.

Thank You!

4https://indico.cern.ch/event/432527/contributions/2267274
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