Recent results on (semi)leptonic B decays from Belle

Saskia Falke

 $\label{eq:saskia.falke@lapp.in2p3.fr} Show the selle collaboration$

EPS-HEP in Venise, July 6th, 2017

Introduction

- Decays with leptons precisely predicted in the Standard Model
- They have high branching fractions
- Leptonic and hadronic currents factorise

Introduction

• Several tensions seen in *B* physics that can be tested using (semi)leptonic decays

World average at 4 σ from SM

Outline

- 1 Measurement of $|V_{cb}|$ and form factors from $B
 ightarrow D^* \ell
 u$
- 2 Recent measurement of $\mathcal{R}(D^{(*)})$
- (3) Measurement $B \rightarrow \eta(\prime) \ell \nu$
- ④ Search for purely leptonic $B
 ightarrow \mu
 u$ decays

10.62

Y(45)

10.58

Results from $B ightarrow D^{(*)} \ell / au u$ decays

- Measure hadronic form factor parameters
- Decays with τ leptons are sensitive to New Physics coupling 3^{rd} generation
- Test lepton flavour universality

Systematics on $|V_{cb}|$, efficiencies, form factors, etc. cancel

SM prediction $\mathcal{R}(D^*) = 0.252 \pm 0.003$ $\mathcal{R}(D) = 0.300 \pm 0.008$

Heechang Na et al. Svjetlana Fajfer et al. Jernej F. Kamenik, Federico Mescia Fermilab Lattice, MILC Collaborations

$$\mathcal{R}(D^{(*)}) = rac{\mathcal{B}(B o D^{(*)} au
u)}{\mathcal{B}(B o D^{(*)} \ell
u)}$$

Form factor parameters measured from $B \to D^{(*)} \ell \nu$ decays used as input for prediction

Precise determination of the CKM matrix element $|V_{cb}|$ with $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_\ell$ decays with hadronic tagging at Belle

BELLE-CONF-1612 arXiv:1702.01521 [hep-ex] 14 Feb 2017

Analysis performed with hadronic tagging (fully reconstructed B_{tag}):

- ightarrow reduce non-B background
- ightarrow know kinematics of signal B

- Performed using neural network
- Efficiency correction in MC using reference channel

Goal of the analysis

Goal of the analysis

→ D*lv (signal)
→ D*lv (wrong D/D*)

fake lepton B→ Dlv B→ D**lv Other B decavs

Continuum

Reconstruction of kinematic distributions

- Signal *B* reconstructed in $B \rightarrow D^* \ell \nu$
- Use 1-dimensional projections of differential decay rates

Signal extraction

• Single non-reconstructed particle in event: neutrino from signal decay

Signal extraction

• Single non-reconstructed particle in event: neutrino from signal decay

Results of $|V_{cb}|^2$ and FF parameter fit

Parameter	Measurement	World average
$ V_{cb} \cdot 10^3$	$\textbf{37.4} \pm \textbf{1.2}$	39.2 ± 0.7
$ ho_{D^*}^2$	1.04 ± 0.13	1.20 ± 0.03
R_1	1.38 ± 0.07	1.40 ± 0.03
R_2	$\textbf{0.86} \pm \textbf{0.10}$	$\textbf{0.85}\pm\textbf{0.02}$
I N parametr	isation	

 Measured values can be used to calculate SM prediction of R(D*)

• Use additional FF *R*₀ from sum rules [arXiv:1203.2653]

Prediction:

 ${\cal R}(D^*)_{\sf SM} = 0.242 \pm 0.005$

 Possibility to test compatibility with NP such as right-handed currents once calculations for FF available

Unfolding of the kinematic distributions

- Unfolded spectra provided: corrected for migration and acceptance
- Difference between inclusive and exclusive depends on parametrisation
- Work ongoing to extract $|V_{cb}|$ using BGL parametrisation

Follow up papers: arXiv:1703.05330 (04/17) arXiv:1703.06124 (04/17) arXiv:1703.08170 (06/17)

 \rightarrow Talk by Stefan Schacht (https://indico.cern.ch/event/466934/ contributions/2586301/)

Measurement of the branching ratio of $\bar{B}^0 \to D^{*+} \tau^- \bar{\nu}_{\tau}$ relative to $\bar{B}^0 \to D^{*+} \ell^- \bar{\nu}_{\ell}$ decays with a semileptonic tagging method

Phys.Rev. D94 (2016) no.7, 072007 – Published 27 October 2016 arXiv:1607.07923 [hep-ex] 13 Dec 2016

Analysis strategy

• Analysis restricted to neutral $B^0 \overline{B}^0$ pairs (due to high background)

Reconstruction

Semileptonic tag ($\epsilon \sim 10^{-2}$):	$B_{tag} ightarrow D^* \ell u$		(1 neutrino)
Signal:	$B_{sig} ightarrow D^* au u$	$\tau \to \ell \nu_\ell \nu_\tau$	(3 neutrino)
Normalisation:	$B_{sig} ightarrow D^* \ell u$		(1 neutrino)

• Analysis restricted to neutral $B^0 \overline{B}^0$ pairs (due to high background)

Reconstruction

Semileptonic tag ($\epsilon \sim 10^{-2}$):	$B_{tag} ightarrow D^* \ell u$		(1 neutrino)
Signal:	$B_{sig} ightarrow D^* au u$	$ au o \ell \nu_\ell \nu_\tau$	(3 neutrino)
Normalisation:	$B_{sig} ightarrow D^* \ell u$		(1 neutrino)

Separation of signal mode and normalisation mode

Angle betw. *B* and $D^*\ell$ -system in $\Upsilon(4S)$ frame:

$$\cos \theta_{B-D^*\ell} = \frac{2E_{beam}E_{D^*\ell} - m_B^2 - M_{D^*\ell}^2}{2|\vec{p}_B||\vec{p}_{D^*\ell}|}$$

- Assumes single neutrino
- Outside range [-1, 1] for signal decay

• 2-dimensional extended binned likelihood fit to E_{ECL} and O_{NB}

Results

Fit to data:

Good agreement with previous Belle measurements

$$H_{eff} = \frac{4G_F}{\sqrt{2}} V_{cb} \left[\mathcal{O}_{SM} + \sum_{\text{all}} C_X \mathcal{O}_X \right]$$

 \mathcal{O}_X : all possible 4-fermion operator C_X : Wilson coefficients

 \bullet Analysis repeated using MC for each of 6 \mathcal{O}_X added one-by-one to constrain Wilson Coefficients

Examples of model interpretations:

Measurement of the τ lepton polarization and $\mathcal{R}(D^*)$ in the decay $\bar{B} \to D^* \tau^- \bar{\nu}_{\tau}$

Phys. Rev. Lett. 118, 211801 Published 26 May 2017 arXiv:1612.00529 [hep-ex]

Measurement of au lepton polarisation in $B o D^* au u$

Tanaka & Watanabe (Phys. Rev. D 87, 034028, 2013)

Measurement of au lepton polarisation in $B ightarrow D^* au u$

Tanaka & Watanabe (Phys. Rev. D 87, 034028, 2013)

Measurement from two-body hadronic τ **decays (hadronic tagging)** $\frac{d\Gamma(D^*)}{d\cos\vartheta_{hel}} = \frac{\Gamma(D^*)}{2} \left[1 + \alpha P_{\tau}(D^*) \cos\vartheta_{hel}\right] \qquad \tau \text{ rest-frame}$ • α : sensitivity from τ decay mode ($\alpha \sim 0$ from

- leptonic au decays)
- $\tau \to \pi \nu_{\tau} \ (\alpha = 1)$ • $\tau \to \rho \nu_{\tau} \ (\alpha = 0.45)$

Signal extraction

• Divide signal into forward ($\cos \vartheta_{hel} > 0$) and backward ($\cos \vartheta_{hel} < 0$) to calculate polarisation

- Likelihood fit in 2 steps:
 - to normalisation sample for $B o D^* \ell \nu$ yield (using M^2_{miss})
 - simultaneous fit to 8 signal samples (using E_{ECL})

Results

- $\mathcal{R}(D^*)$ can be calculated as before from extracted yields
- Polarisation from forward/backward asymmetry

- Consistent with SM and previous measurements!
- ${\scriptstyle \bullet \,}$ Error can be reduced in Belle II

New status of $\mathcal{R}(D^*)$

Excess still 4σ : central value moved towards SM;

on $\mathcal{R}(D^*)$, discrepancy increased from 3.0 σ to 3.4 σ

Measurement of the decays $B\to \eta\ell\nu_\ell$ and $B\to \eta'\ell\nu_\ell$ in fully reconstructed events at Belle

arXiv:1703.10216 - 29 March 2017 submitted to PRD(RC)

Overview and result

Important to know decay composition for signal model in inclusive $|V_{ub}|$ measurements \rightarrow test tension between inclusive and exclusive

Reconstruction & signal extraction:

- Hadronic tagging to reduce background
- $\eta: \eta \to \gamma \gamma$ and $\eta \to \pi^+ \pi^- \pi^0$
- $\eta' \!\!: \eta' \to \eta \pi^+ \pi^-$ with $\eta \to \gamma \gamma$

Binned likelihood fit on M_{miss}^2 with 4 components

Results

$$\mathcal{B}(B \to \eta \ell \nu_{\ell}) = (4.2 \pm 1.1 \pm 0.3) \cdot 10^{-1}$$

 $\mathcal{B}(B \to \eta' \ell \nu_{\ell}) < 0.72 \cdot 10^{-4}$ at 90% C.

- Compatible with results from CLEO and BaBar
- $\bullet~$ Limited by stat. $\rightarrow~$ significant improvement with Belle II

Search for $B \rightarrow \mu \nu$ decays at the Belle experiment

July 2017, PRL journal publication in preparation

VO

 W^{-}

- May increase significantly within NP models
- Limit (HFLAV, Nov 2016): $< 10 \cdot 10^{-7}$ (90% C.L.)
 - New result from Belle: first measurement leading to branching fraction (not upper limit)

SM prediction $\mathcal{B}(B \rightarrow \mu \nu) = (3.80 \pm 0.31) \cdot 10^{-7}$

Input from: Na et al., arXiv:1212.0586 Particle Data Group, Chin. Phys. C 40, no. 10, 100001 (2016) Belle Collaboration, Phys. Rev. D 88, 032005 (2016) Fermilab Lattice and MILC Coll., Phys. Rev. D 92, 014024 (2015)

Selection & signal extraction

Signal selection

- ${\, \bullet \,}$ Angle between \vec{p}_{μ} and thrust axis used to reduce jet-like continuum
- *B* rest-frame: $E_{\mu} = \frac{m_B}{2}$ (boosted in CMS: p_{μ}^*)
- p_{μ}^{*} side-bands used for validation
- Neural network trained for separation of signal from background

Result

2-dim. binned likelihood fit in p_{μ}^{*} and neural network output

Conclusion

- $|V_{cb}|$ and FF parameters from $B o D^* \ell
 u$: agree with world average
- Unfolded differential decay rates: can be used to test different models
- Three measurements of $\mathcal{R}(D^{(*)})$, yielding compatible results
- First measurement of au polarisation: agrees with the SM prediction
- First measurement of $B o \eta^{(\prime)} \ell \nu_{\ell}$ by Belle
- First measurement of $B
 ightarrow \mu
 u$ leading to a branching fraction

Prospects for Belle II:

Observable	Belle / LHCb Measurements	Today	Belle II 5/ab	Belle II 50/ab
R(D)	0.403 +/- 0.040 +/- 0.024	12%	5.6%	3.2%
R(D*)	0.310 +/- 0.015 +/- 0.008	5.4%	3.9%	2.2%

For confirmed central value, would be possible to measure 9σ deviation from SM!

Backup

Measurement of the branching ratio of $\bar{B} \rightarrow D^{(*)} \tau^- \bar{\nu}_{\tau}$ relative to $\bar{B} \rightarrow D^{(*)} \ell^- \bar{\nu}_{\ell}$ decays with hadronic tagging at Belle

Phys. Rev. D 92, 072014 Published 26 October 2015 arXiv:1507.03233 [hep-ex] 12 July 2015

Simultaneous fit of $\mathcal{R}(D)$ and $\mathcal{R}(D^*)$

Saskia Falke

(Semi)leptonic B decays with Belle

Results and New Physics interpretation

Result

 $\mathcal{R}(D) = 0.375 \pm 0.064 \pm 0.026$ $\mathcal{R}(D^*) = 0.293 \pm 0.038 \pm 0.015$

Agreement with SM: 1.8σ

Test of type II 2HDM model:

- Acceptances & efficiencies depend model assumptions: fit repeated with MC generated with $\frac{\tan\beta}{m_{H^+}} = 0.5 \,\text{GeV}^{-1}$
- Results:

 $\mathcal{R}(D) = 0.329 \pm 0.060 \pm 0.022$ $\mathcal{R}(D^*) = 0.301 \pm 0.039 \pm 0.015$

- Reconstruct tagging B meson in $B o D^* \ell
 u$
- Measurement statistically independent to those with hadronic tagging

 $|V_{cb}|$ and FF's from $B \rightarrow D^* \ell \nu$

$\Delta \mathcal{B} \ [\%]$
3.6
1.4
1.1
0.9
0.4
0.2
0.2
0.2
0.1
0.1
< 0.1
< 0.1
< 0.1
< 0.1
4.2

	R(D)[%]	$R(D^*)$ [%]	Correlation
$D^{(*(*))}\ell\nu$ shapes	4.2	1.5	0.04
D^{**} composition	1.3	3.0	-0.63
Fake D yield	0.5	0.3	0.13
Fake ℓ yield	0.5	0.6	-0.66
D_s yield	0.1	0.1	-0.85
Rest yield	0.1	0.0	-0.70
Efficiency ratio f^{D^+}	2.5	0.7	-0.98
Efficiency ratio f^{D^0}	1.8	0.4	0.86
Efficiency ratio $f_{\text{eff}}^{D^{*+}}$	1.3	2.5	-0.99
Efficiency ratio $f_{\text{eff}}^{D^{*0}}$	0.7	1.1	0.94
CF double ratio g^+	2.2	2.0	-1.00
CF double ratio g^0	1.7	1.0	-1.00
Efficiency ratio $f_{\rm wc}$	0.0	0.0	0.84
$M_{\rm miss}^2$ shape	0.6	1.0	0.00
$o'_{\rm NB}$ shape	3.2	0.8	0.00
Lepton PID efficiency	0.5	0.5	1.00
Total	7.1	5.2	-0.32

	\mathcal{R}	(D^*) [%]	
Sources	$\ell^{\rm sig} = e, \mu$	$\ell^{\rm sig} = e$	$\ell^{\rm sig} = \mu$
MC size for each PDF shape	2.2	2.5	3.9
PDF shape of the normalization in $\cos \theta_{B-D^*\ell}$	$^{+1.1}_{-0.0}$	$^{+2.1}_{-0.0}$	$^{+2.8}_{-0.0}$
PDF shape of $B \to D^{**} \ell \nu_{\ell}$	$^{+1.0}_{-1.7}$	$^{+0.7}_{-1.3}$	$^{+2.2}_{-3.3}$
PDF shape and yields of fake $D^{(*)}$	1.4	1.6	1.6
PDF shape and yields of $B \to X_c D^*$	1.1	1.2	1.1
Reconstruction efficiency ratio $\varepsilon_{\rm norm}/\varepsilon_{\rm sig}$	1.2	1.5	1.9
Modeling of semileptonic decay	0.2	0.2	0.3
${\cal B}(au^- o \ell^- ar u_\ell u_ au)$	0.2	0.2	0.2
Total systematic uncertainty	$^{+3.4}_{-3.5}$	$^{+4.1}_{-3.7}$	$+5.9 \\ -5.8$

Source	rel. uncertainty on $\mathcal{R}(D^*)$	uncertainty on $P_{ au}(D^*)$
Hadronic <i>B</i> decay composition	+7.7%	$^{+0.13}_{-0.10}$
MC stat. for PDF construction	+4.0%	$^{+0.15}_{-0.11}$
Semileptonic <i>B</i> decays	$\pm 3.5\%$	± 0.05
Fake D^* background	$\pm 3.4\%$	0.02
Other	$\pm 2.2\%$	±0.03

Allowed regions for Wilson coefficients

Models or operators	Parameters	Allowed regions
		(68% C.L.)
\mathcal{O}_{S_1}	C_{S_1}	[-4.25, -3.09], [+0.44, +1.57]
\mathcal{O}_{S_2}	C_{S_2}	[-1.56, -0.43], [+3.12, +4.28]
\mathcal{O}_{V_1}	C_{V_1}	[-2.15, -2.03], [+0.05, +0.15]
\mathcal{O}_{V_2}	C_{V_2}	[-0.17, 0.00], [+1.83, +1.96]
\mathcal{O}_T	C_T	[-0.06, -0.01], [+0.34, +0.39]
R_2 -type leptoquark	$C_T(=+C_{S_2}/7.8)$	[-0.05, -0.01], [+0.34, +0.38]
S_1 -type leptoquark	$C_T(=-C_{S_2}/7.8)$	[-0.07, -0.01], [+0.22, +0.28]