Searches for supersymmetry via strong production in events with one or more leptons at CMS

Christian Schomakers

I. Physikalisches Institut B, RWTH Aachen on behalf of the CMS Collaboration

July 6th, 2017

SPONSORED BY THE

LHC and CMS performed very well last year

• 35.9 fb^{-1} for us to analyze

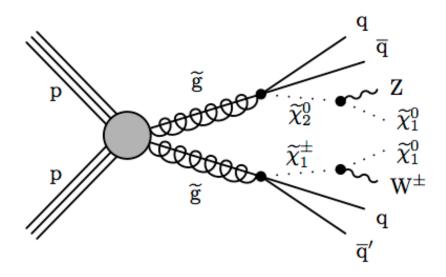
A lot of work by many people to present 2016 SUSY results at Moriond

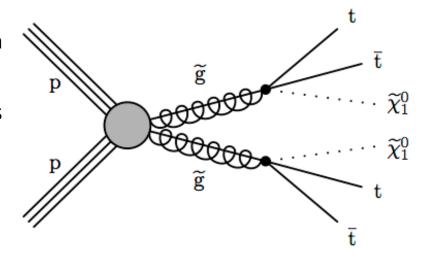
Most are currently being turned into papers

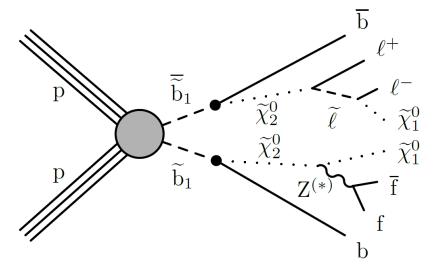
Leptonic final states of particular interest:

- Light stops in "natural" SUSY models + flavor conservation → top quarks → leptons
- EWK models : Weak mass limits, difficult to discover in hadronic final states
- Measuring electrons and muons is relatively easy
- QCD background is strongly suppressed
- Remaining background processes well understood, can often be estimated from data

Talks on leptonic CMS SUSY searches:


- This talk: Strongly produced SUSY models
- Constantin's talk later: Compressed spectra and decays via Higgs bosons
- Indara's talk later: Third generation squarks
- Miaoyuan's talk tomorrow: EWK produced SUSY




Strongly produced leptonic final states

- Strong SUSY production and R-parity conservation \rightarrow jets and p_{T}^{miss}
- Single/uncorrelated leptons from W boson decays
- Correlated lepton signatures from Z boson or sleptons in decay chain
- Only electrons and muons considered here

Covered analyses

Single lepton searches (1ℓ large jets, $1\ell \Delta \varphi$):

CMS-SUS-16-037: Search for supersymmetry in pp collisions at $\sqrt{s} = 13$ TeV in the single-lepton final state using the sum of masses of large-radius jets arXiv:1705.04673

CMS-PAS-SUS-16-042: Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with 2016 data

Dilepton searches (OS, LS):

CMS-PAS-SUS-16-034: Search for new phenomena in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV

CMS-SUS-16-035: Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV. arXiv:1704.07323

Multilepton search:

CMS-PAS-SUS-16-041: Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV

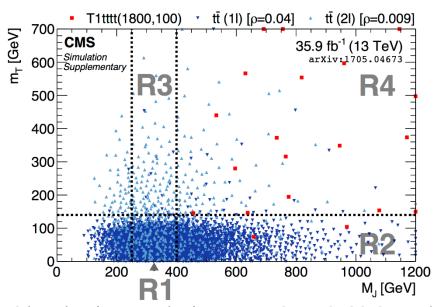
Single lepton search with large jets

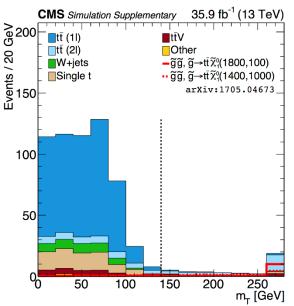
Search for supersymmetry in pp collisions at $\sqrt{s}=13$ TeV in the single-lepton final state using the sum of masses of largeradius jets

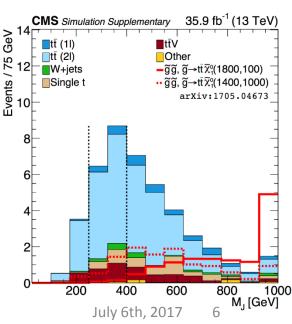
(CMS-SUS-16-037)

arXiv:1705.04673

1ℓ large jets: Background estimation

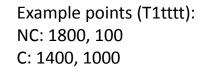


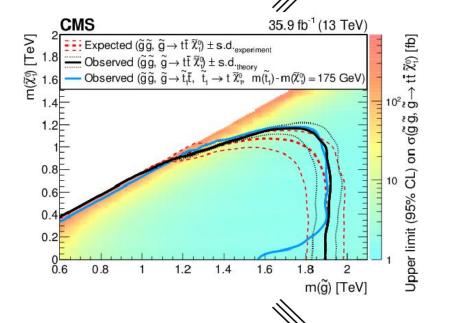

Observables and selection:


- Selection: $(H_{\mathrm{T}}+p_{\mathrm{T}}^{\ell})>$ 500 GeV, $p_{\mathrm{T}}^{miss}>$ 200 GeV, 6+ jets, 1+ b-jets
- $m_{
 m T}$ to supress semileptonic ${
 m t}ar{{
 m t}}$
- Recluster jets and leptons to large jets (R=1.4 cone)
- $M_J = Scalar sum of masses of large jets$

Background estimation:

- $\bullet \quad N_{R4} = \kappa \frac{N_{R2}}{N_{R1}} N_{R3}$
- κ : MC corrections for residual $m_{ ext{T}}$ -M $_I$ correlations
- Fit in R1-3 for background prediction and global fit on all regions for interpretation





1ℓ large jets: Results and interpretation

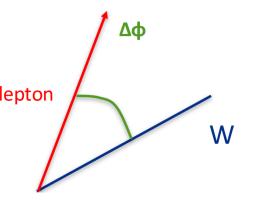
N _{jets}	$N_{\rm b}$	NC	С	К	Pred.	Obs.
		20	0 < p	$_{ m T}^{ m miss} \leq 350{ m C}$	eV	
6-8	1	0.4	1.9	1.2 ± 0.2	85 ± 14	106
6-8	2	0.6	3.0	1.2 ± 0.2	55.1 ± 9.3	<i>7</i> 5
6-8	≥ 3	0.6	2.2	1.5 ± 0.2	16.4 ± 3.0	16
≥ 9	1	0.2	1.6	1.0 ± 0.2	6.5 ± 1.5	11
≥9	2	0.3	2.1	1.2 ± 0.3	7.6 ± 1.9	11
≥ 9	≥ 3	0.4	3.1	1.4 ± 0.3	2.3 ± 0.7	2
		35	0 < p	$_{\rm T}^{\rm miss} \leq 500{\rm C}$	eV	
6-8	1	0.7	1.1	1.0 ± 0.3	17.4 ± 6.6	25
6-8	2	0.9	1.3	1.1 ± 0.4	13.7 ± 5.3	10
6-8	≥ 3	0.8	0.9	1.3 ± 0.4	3.8 ± 1.6	1
≥ 9	1	0.3	1.0	1.1 ± 0.4	1.3 ± 0.6	2
≥9	2	0.5	1.1	0.8 ± 0.3	1.6 ± 0.8	2
≥ 9	≥ 3	0.7	2.1	1.2 ± 0.5	0.6 ± 0.4	0
			$p_{\mathrm{T}}^{\mathrm{miss}}$	> 500 GeV		
6-8	1	2.5	0.6	1.0 ± 0.3	1.9 ± 1.5	8
6-8	2	3.6	1.0	1.0 ± 0.4	0.9 ± 0.7	4
6-8	≥ 3	3.2	0.4	1.5 ± 0.6	0.4 ± 0.4	1
≥ 9	1	1.0	0.7	1.0 ± 0.4	0.2 ± 0.2	2
≥9	2	1.8	1.2	1.0 ± 0.4	0.1 ± 0.1	0
≥9	≥ 3	2.3	1.7	3.1 ± 1.5	0.1 ± 0.1	0

- Yields in R1 and R3 not split by (b-) jet multiplicity
 - ightarrow Results in each p_{T}^{miss} region correlated
- Agreement within 2 σ in single bins and combined $p_{\mathrm{T}}^{miss}>$ 500 GeV bin
- Gluino masses up to 1.9 TeV excluded

Single lepton search with $\Delta \phi$

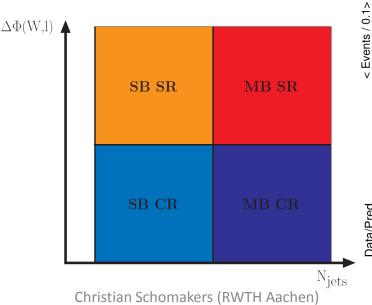
Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s}=13$ TeV with 2016 data

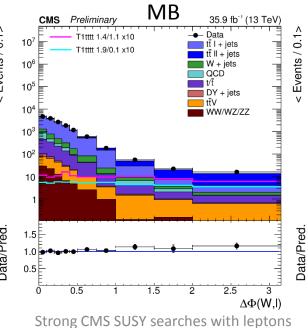
(CMS-PAS-SUS-16-042)

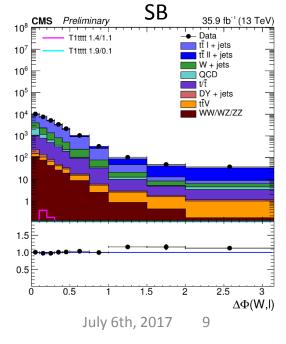


1ℓ Δφ: Background estimation

Observables and selection:

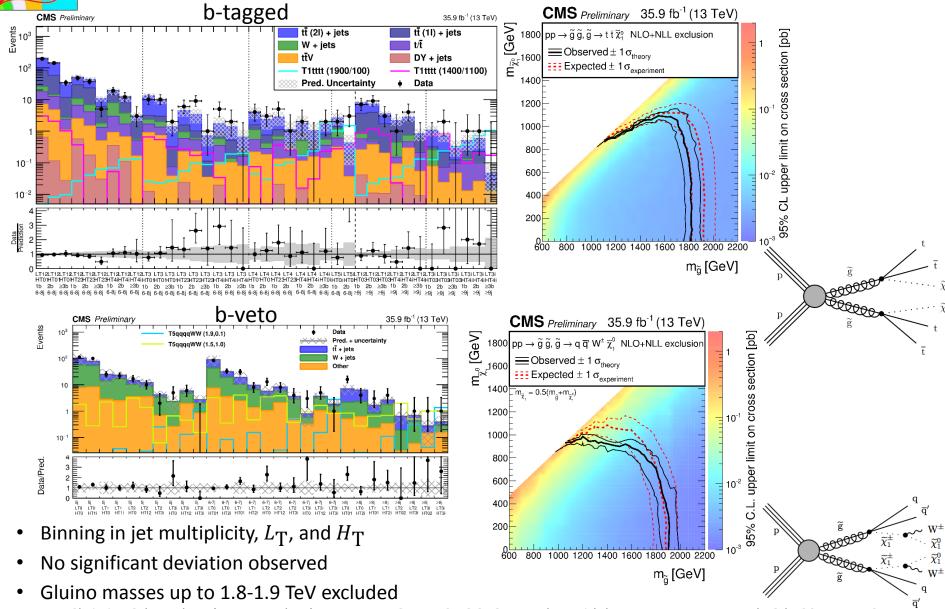

- Selection: $L_{\mathrm{T}}=p_{\mathrm{T}}^{miss}$ + $p_{\mathrm{T}}^{\ell}>$ 250 GeV, 5+ jets, $H_{\mathrm{T}}>$ 500 GeV




Background estimation:

•
$$N_{MB}^{SR} = \kappa \frac{N_{SB}^{SR}}{N_{SB}^{CR} - N_{QCD,SB}^{CR}} N_{MB}^{CR}$$

- κ : MC corr. for differences in (b-) jet multiplicity between side band (SB) and main band (MB)
- Search performed in b-tagged (tt dominated) and b-veto (W+jets and tt) regions
- QCD est. from tight-to-loose ratio



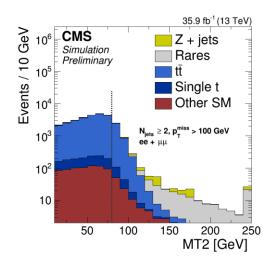
CMS Prelim

1ℓ Δφ: Results and interpretation

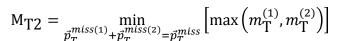
Opposite-sign, same-flavor dilepton search

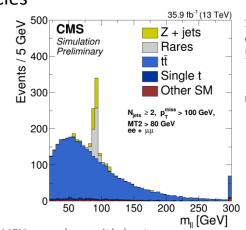
Search for new phenomena in final states with two oppositesign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV

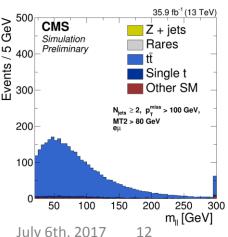
(CMS-PAS-SUS-16-034)



OS: Background estimation

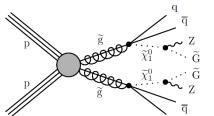

Search strategies and selection:

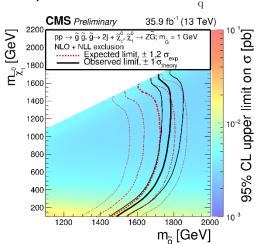

- Selection: $p_{\mathrm{T}}^{miss} >$ 100 (150) GeV, 2+ jets
- $\rm M_{T2} > 80$ GeV to supress most of the dominant $\rm t\bar{t}$ background
- Resonant contribution on the Z peak ($|m_{\ell\ell} m_Z| < 5$ GeV):
 - Binning in (b-) jet multiplicity and $p_{
 m T}^{miss}$
- Edge like feature in $m_{\ell\ell}$ outside the Z window:
 - Kinematic fit to search for edge shaped feature in full mass range
 - Counting experiment in mass and tt likelihood bins

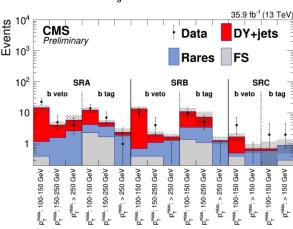


Background estimation:

- Flavor-symmetric background:
 - From $e\mu$ control region
 - Corrected by $R_{SF/DF}$ for differences in efficiencies
- Z+jets background
 - No neutrinos, p_{T}^{miss} from mismeasured jets
 - Estimated with p_{T}^{miss} templates from γ +jets sample
- Rare backgrounds ($Z+\nu$)
 - From MC
 - WZ, ZZ, and ttZ validated in control regions

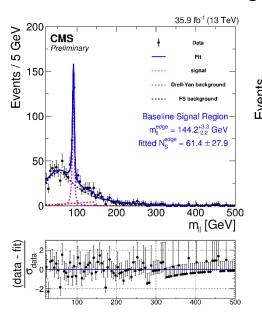




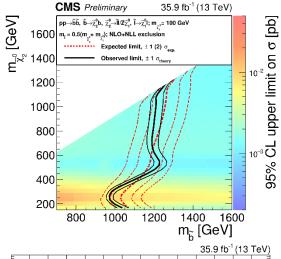


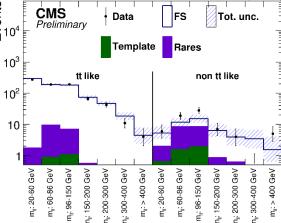
OS: Results and interpretation

RWTHAACHEN 5 UNIVERSITY


Christian Schomakers (RWTH Aachen)

on-Z:


- No significant deviation
- Limits on GMSB gluino pair production model up to 1.8 TeV


off-Z:

- 2σ deviation in non $t\bar{t}$ like, $m_{\ell\ell}$ 96-150 GeV bin
- Best fit at 144 GeV (61 ± 28 ev.)
- Sbottom limits up to 1.2 TeV
- · Limit contour reflects mass binning

Strong CMS SUSY searches with leptons

July 6th, 2017

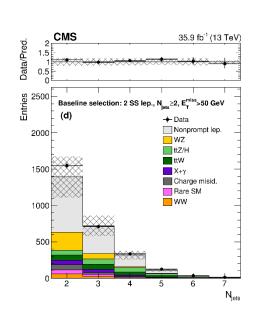
Like-sign dilepton search

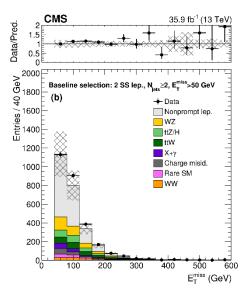
Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV

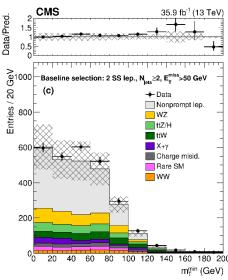
(CMS-SUS-16-035)

arXiv:1704.07323

LS: Background estimation

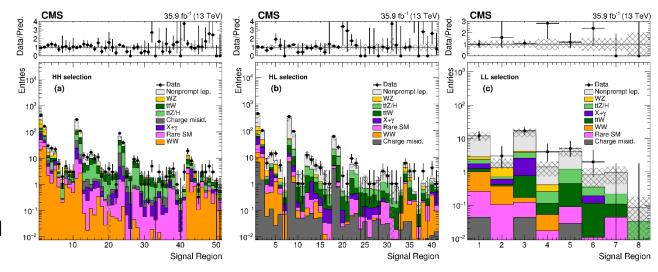


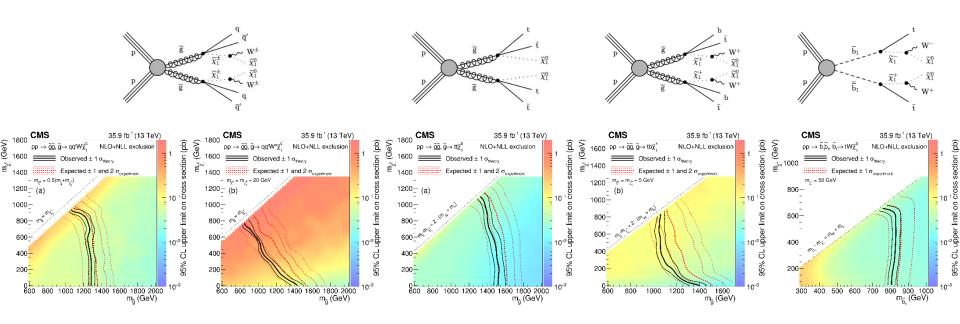

Selection:


- 1+ LS lepton pair ($m_{\ell\ell} > 8$ GeV), 2+ jets, $p_{\mathrm{T}}^{miss} >$ 50 GeV
- Veto if additional loose lepton can be used for an OS pair with $m_{\ell\ell}<12$ GeV or $|m_{\ell\ell}-m_Z|<15$ GeV
- Further binning in lepton $p_{\rm T}$, (b-) jet multiplicity, $H_{\rm T}$, $p_{\rm T}^{miss}$, $m_{\rm T}^{min}$ and split into ++ and -- lepton pairs

Background estimation:

- Non-prompt leptons:
 - Tight-to-loose ratio from control region
- Rare SM processes with prompt LS pairs:
 - From MC
 - WZ and ttZ validated in control regions
- Charge-misidentificatied electrons:
 - Misidentification rate taken from MC
 - Validated in control region and applied to OS data





LS: Results and interpretation

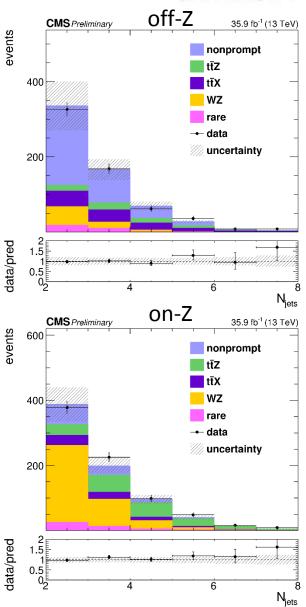
- No significant deviation in any of the SRs
- Interpretet in a variety of SUSY models
- Several compressed spectra
- Further interpretations include (pseudo-)scalar boson production and model independent upper limits

Multilepton search

Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-proton collision data at \sqrt{s} = 13 TeV

(CMS-PAS-SUS-16-041)

Multilepton: Background estimation



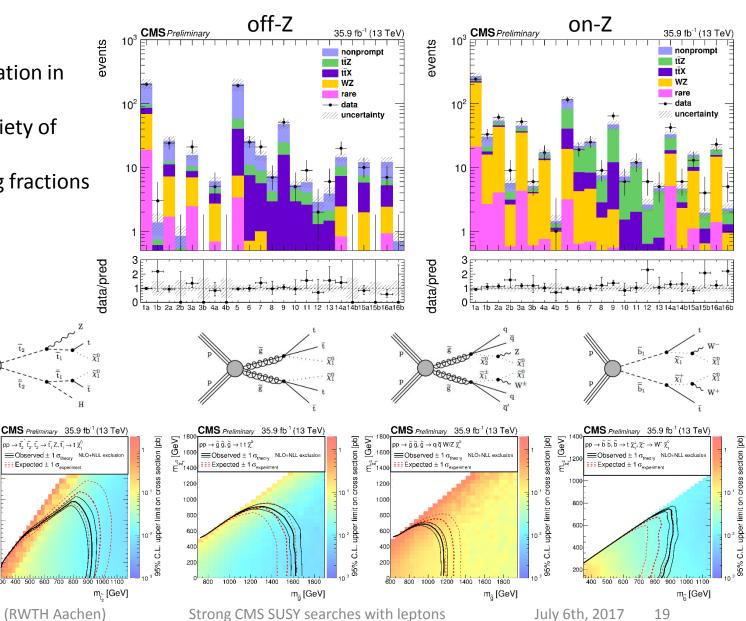
Selection:

- 3+ leptons, $m_{\ell\ell} > 12$ GeV for OSSF pairs, 2+ jets, $p_{\rm T}^{miss} >$ 50 GeV
- On-Z regions:
 - OSSF pair with $|m_{\ell\ell}-m_Z|<15$ GeV
- Binning in (b-) jet multiplicity, H_{T} , p_{T}^{miss} , $m_{\ell\ell}$ and m_{T}

Background estimation:

- Non-prompt leptons:
 - Dominant in off-Z regions
 - Tight-to-loose ratio from control region
- Remaining backgrounds:
 - From MC
 - WZ and ttZ validated in control regions

Multilepton: Results and interpretation


- No significant deviation in any of the SRs
- Interpretet in a variety of **SUSY** models

CMS Preliminary 35.9 fb⁻¹ (13 TeV)

CMS Preliminary 35.9 fb⁻¹ (13 TeV)

m_{t.} [GeV]

Different branching fractions tested

- LHC and CMS performed extremely well in 2016
- CMS presented lots of (leptonic) SUSY searches at Moriond
- Several already published as papers, many more to follow
- Unfortunately, no sign for SUSY in any of the leptonic searches for strongly produced SUSY
- Time for easy limit extension in simple final states is likely over
- Might need to focus on more complex scenarios or those we lacked statistics for (compressed spectra, EWK models, boosted topologies, RPV ...)
- Results on some of these scenarios later on or tomorrow

Extras

- Signal region definitions
- Numerical results
- Additional interpretations

1ℓ $\Delta \varphi$: b-tagged results

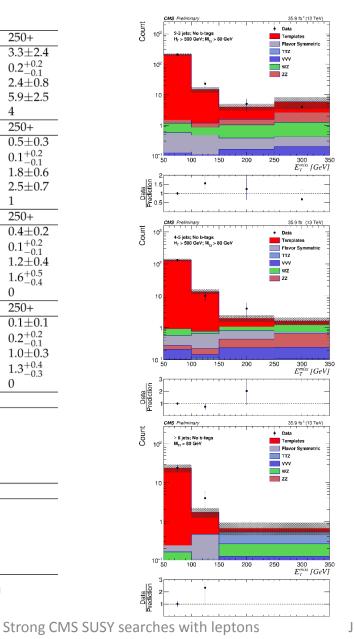
		L_{T}	H_{T}		Expected signal	T1tttt $m_{\widetilde{g}}/m_{\widetilde{g}^0}$ [TeV]	Predicted	01 1
$n_{ m jet}$	$n_{\rm b}$	[GeV]	[GeV]	Bin name	(1.9,0.1)	(1.4,1.1)	background	Observed
[6, 8]	= 1	[250, 450]	[500, 1000]	NB1, LT12, HT01	< 0.01	3.02 ± 0.24	206 ± 12 ± 9.4	194
[-, -]		[,,	[1000, 1500]	NB1, LT12, HT23	0.03 ± 0.01	0.37 ± 0.08	$53 \pm 7.4 \pm 3.6$	48
			> 1500	NB1, LT12, HT4i	0.07 ± 0.01	0.05 ± 0.03	$18 \pm 4.2 \pm 0.5$	19
		[450, 600]	[500, 1000]	NB1, LT3, HT01	0.03 ± 0.01	0.66 ± 0.11	$13 \pm 2.5 \pm 0.9$	10
		. ,	[1000, 1500]	NB1, LT3, HT23	0.05 ± 0.01	0.27 ± 0.07	$4.5 \pm 1.7 \pm 0.3$	6
			≥ 1500	NB1, LT3, HT4i	0.09 ± 0.01	0.03 ± 0.02	$1.7 \pm 1.0 \pm 0.3$	5
		[600, 750]	[500, 1000]	NB1, LT4, HT01	0.04 ± 0.01	0.08 ± 0.04	$4.0 \pm 1.5 \pm 0.5$	4
			[1000, 1500]	NB1, LT4, HT23	0.08 ± 0.01	0.35 ± 0.08	$2.8 \pm 1.3 \pm 0.2$	5
			≥ 1500	NB1, LT4, HT4i	0.17 ± 0.02	0.02 ± 0.02	$1.8 \pm 1.2 \pm 0.2$	2
		≥ 750	≥ 500	NB1, LT5i, HT0i	1.01 ± 0.04	0.28 ± 0.07	$2.6 \pm 1.1 \pm 0.2$	2
	= 2	[250, 450]	[500, 1000]	NB2, LT12, HT01	0.01 ± 0.01	2.06 ± 0.20	$147 \pm 9.4 \pm 5.5$	143
			[1000, 1500]	NB2, LT12, HT23	0.04 ± 0.01	< 0.01	$44 \pm 7.3 \pm 1.7$	37
			≥ 1500	NB2, LT12, HT4i	0.13 ± 0.01	< 0.01	$11 \pm 2.7 \pm 0.7$	12
		[450, 600]	[500, 1000]	NB2, LT3, HT01	0.02 ± 0.01	0.54 ± 0.10	$9.4 \pm 2.1 \pm 0.8$	10
			[1000, 1500]	NB2, LT3, HT23	0.10 ± 0.01	0.17 ± 0.06	$3.4 \pm 1.7 \pm 0.2$	9
			≥ 1500	NB2, LT3, HT4i	0.19 ± 0.02	< 0.01	$1.4 \pm 0.8 \pm 0.2$	2
		[600, 750]	[500, 1000]	NB2, LT4, HT01	0.03 ± 0.01	< 0.01	$2.4 \pm 1.2 \pm 0.4$	3
			[1000, 1500]	NB2, LT4, HT23	0.10 ± 0.01	0.26 ± 0.07	$1.2 \pm 0.9 \pm 0.2$	1
			≥ 1500	NB2, LT4, HT4i	0.24 ± 0.02	0.03 ± 0.02	$1.1 \pm 0.8 \pm 0.2$	0
		≥ 750	≥ 500	NB2, LT5i, HT0i	1.50 ± 0.05	0.32 ± 0.08	$0.42 \pm 0.34 \pm 0.05$	3
	≥ 3	[250, 450]	[500, 1000]	NB3i, LT12, HT01	0.01 ± 0.01	1.03 ± 0.14	$33 \pm 2.9 \pm 1.5$	34
			[1000, 1500]	NB3i, LT12, HT23	0.06 ± 0.01	< 0.01	$11 \pm 2.0 \pm 0.5$	5
			≥ 1500	NB3i, LT12, HT4i	0.13 ± 0.01	< 0.01	$2.9 \pm 0.9 \pm 0.3$	3
		[450, 600]	[500, 1000]	NB3i, LT3, HT01	0.03 ± 0.01	0.29 ± 0.07	$1.4 \pm 0.5 \pm 0.2$	2
			[1000, 1500]	NB3i, LT3, HT23	0.09 ± 0.01	0.20 ± 0.06	$0.72 \pm 0.38 \pm 0.07$	1
			≥ 1500	NB3i, LT3, HT4i	0.20 ± 0.02	< 0.01	$0.66 \pm 0.44 \pm 0.07$	0
		≥ 600	≥ 500	NB3i, LT4i, HT0i	1.85 ± 0.05	0.23 ± 0.06	$1.7 \pm 0.7 \pm 0.2$	2
≥ 9	=1	[250, 450]	[500, 1500]	NB1, LT12, HT03	0.01 ± 0.01	0.90 ± 0.12	$7.9 \pm 0.9 \pm 0.7$	7
		> 450	≥ 1500	NB1, LT12, HT4i	0.03 ± 0.01	0.02 ± 0.02	$2.2 \pm 0.7 \pm 0.2$	1
		≥ 450	[500, 1500]	NB1, LT3i, HT03	0.13 ± 0.01	0.72 ± 0.11	$1.1 \pm 0.4 \pm 0.2$	0
		[250 450]	≥ 1500	NB1, LT3i, HT4i	0.38 ± 0.02	0.10 ± 0.04	$0.50 \pm 0.26 \pm 0.06$	1
	= 2	[250, 450]	[500, 1500]	NB2, LT12, HT03	0.02 ± 0.01	1.15 ± 0.14	$7.3 \pm 0.8 \pm 0.5$	9
		> 450	≥ 1500	NB2, LT12, HT4i	0.08 ± 0.01	< 0.01	$2.8 \pm 0.8 \pm 0.3$	4
		≥ 450	[500, 1500]	NB2, LT3i, HT03	$\begin{array}{cccc} 0.23 & \pm & 0.02 \\ 0.72 & \pm & 0.03 \end{array}$	$\begin{array}{cccc} 0.83 & \pm & 0.12 \\ 0.20 & \pm & 0.05 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2
		[250, 450]	≥ 1500 [500, 1500]	NB2, LT3i, HT4i NB3i, LT12, HT03	$ \begin{array}{cccc} 0.72 & \pm & 0.03 \\ 0.03 & \pm & 0.01 \end{array} $	$\begin{array}{cccc} 0.20 & \pm & 0.05 \\ 0.79 & \pm & 0.11 \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	3
	≥ 3	[230, 430]	≥ 1500	NB3i, LT12, HT4i	0.03 ± 0.01 0.13 ± 0.01	0.79 ± 0.11 < 0.01	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0
		> 450	[500, 1500]	NB3i, LT3i, HT03	0.13 ± 0.01 0.31 ± 0.02	0.26 ± 0.06	$0.83 \pm 0.34 \pm 0.07$ $0.33 \pm 0.16 \pm 0.07$	0
		≥ 450	≥ 1500	NB3i, LT3i, HT4i	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	0.26 ± 0.06 0.17 ± 0.05	$0.05 \pm 0.16 \pm 0.07$ $0.05 \pm 0.05 \pm 0.01$	0
			≥ 1500	1ND31, L131, H141	1.04 ± 0.04	0.17 ± 0.05	0.05 ± 0.05 ± 0.01	U

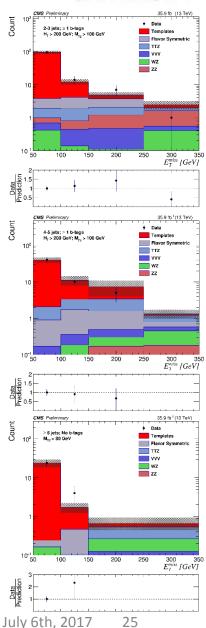
1ℓ Δφ: b-veto results

11.	L_{T}	$H_{ m T}$	Bin name	Signa	ıl T5	qqqqW	$W m_{\widetilde{g}}/r$	$m_{\widetilde{\chi}^0}$ [TeV]	Pre	edicte	ed	Observed
$n_{ m jet}$	[GeV]	[GeV]	ви паше	1	.5/1.		(1.9/0.1)		background			Observed
	[250, 250]	[500,750]	LT0, HT0	1.82	<u>±</u>	0.29	<	0.01	101.91	<u>±</u>	47.55	111
	[250, 350]	≥ 750 ¹	LT0, HT1i	0.21	\pm	0.09	0.01	\pm 0.01	76.73	\pm	16.19	100
	[250, 450]	[500, 750]	LT1, HT0	2.25	±	0.32	<	0.01	24.43	\pm	14.78	25
	[350, 450]	≥ 750 ¹	LT1, HT1i	0.29	\pm	0.11	0.04	\pm 0.01	22.78	\pm	8.29	22
		[500,750]	LT2, HT0	3.02	\pm	0.37	<	0.01	14.46	\pm	6.5	17
D	[450,650]	[750, 1250]	LT2, HT12	1.4	\pm	0.25	0.04	\pm 0.02	12.13	\pm	4.68	10
	-	≥ 1250	LT2, HT3i	0.08	\pm	0.06	0.25	\pm 0.04	4.15	\pm	1.72	2
		[500,750]	LT3i, HT0	0.74	\pm	0.18	0.01	\pm 0.01	2.32	\pm	1.49	5
	≥ 650	[750, 1250]	LT3i, HT12	0.49	\pm	0.15	0.12	\pm 0.03	5.79	\pm	1.96	6
		≥ 1250	LT3i, HT3i	0.14	\pm	0.07	1.15	\pm 0.08	2.74	\pm	1.26	0
	[250, 250]	[500, 1000]	LT0, HT01	3.02	土	0.36	<	0.01	89.32	\pm	38.21	85
	[250, 350]	≥ 1000	LT0, HT2i	0.31	\pm	0.1	0.09	\pm 0.02	30.94	\pm	5.08	33
	[350, 450]	[500, 1000]	LT1, HT01	4.13	土	0.41	0.01	\pm 0.01	18.91	\pm	10.89	31
	[330,430]	≥ 1000	LT1, HT2i	0.52	\pm	0.14	0.14	\pm 0.03	9.51	\pm	2.34	8
[6,7]		[500,750]	LT2, HT0	3.63	土	0.39	<	0.01	5.71	\pm	3.31	13
[6,	[450,650]	[750, 1250]	LT2, HT12	3.79	\pm	0.39	0.03	\pm 0.01	8.21	\pm	3.15	8
		≥ 1250	LT2, HT3i	0.36	\pm	0.12	0.47	\pm 0.05	3.61	\pm	1.78	4
		[500,750]	LT3i, HT0	0.89	\pm	0.19	<	0.01	0.79	\pm	0.53	3
	≥ 650	[750, 1250]	LT3i, HT12	1.77	\pm	0.26	0.15	\pm 0.03	3.63	\pm	1.37	5
		≥ 1250	LT3i, HT3i	0.83	\pm	0.18	2.83	\pm 0.12	1.83	\pm	0.86	1
	[250, 250]	[500, 1000]	LT0, HT01	0.88	土	0.18	<	0.01	6.96	±	2.83	16
	[250, 350]	≥ 1000	LT0, HT2i	0.26	\pm	0.09	0.03	\pm 0.01	6.32	\pm	1.17	4
	[350, 450]	[500, 1000]	LT1, HT01	0.55	土	0.14	<	0.01	1.67	±	0.77	3
∞	[330,430]	≥ 1000	LT1, HT2i	0.72	\pm	0.15	0.11	\pm 0.02	2.65	\pm	0.89	4
\wedge I	[450, 650]	[500, 1250]	LT2, HT02	2.07	土	0.26	0.01	\pm 0.01	0.63	\pm	0.32	0
	[430,630]	≥ 1250	LT2, HT3i	0.45	\pm	0.12	0.3	\pm 0.04	0.68	\pm	0.35	1
	≥ 650	[500, 1250]	LT3i, HT02	0.97	±	0.18	0.04	\pm 0.01	0.27	\pm	0.23	1
	<u> </u>	≥ 1250	LT3i, HT3i	1.12	\pm	0.18	1.37	\pm 0.08	0.38	\pm	0.24	1

OS: Signal region definitions

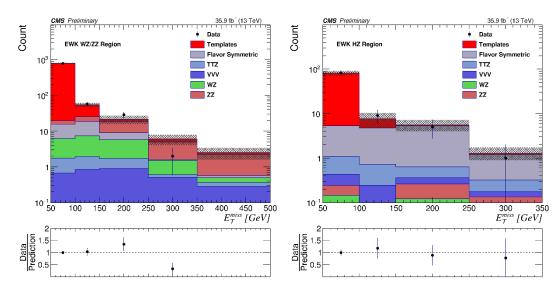
Strong on-Z Signal Regions								
Region	$N_{\rm jets}$	$N_{ ext{b-jets}}$	H_{T}	$M_{T2}(\ell\ell)$	E _T ^{miss} binning [GeV]			
SRA b-veto	2–3	= 0	> 500 GeV	> 80 GeV	[100,150,250,∞]			
SRB b-veto	4–5	= 0	> 500 GeV	> 80 GeV	[100,150,250,∞]			
SRC b-veto	≥ 6	= 0	-	> 80 GeV	[100,150,∞]			
SRA b-tag	2–3	≥ 1	> 200 GeV	> 100 GeV	[100,150,250,∞]			
SRB b-tag	4–5	≥ 1	> 200 GeV	> 100 GeV	[100,150,250,∞]			
SRC b-tag	≥ 6	≥ 1	-	> 100 GeV	[100,150,∞]			
Electroweak on-Z Signal Regions								
Region	N _{jets}	$N_{\mathrm{b-jets}}$	dijet mass	M_{T2}	E _T ^{miss} binning [GeV]			
VZ	≥ 2	= 0	$m_{ij} < 110 GeV$	$M_{T2}(\ell\ell) > 80 \text{GeV}$	[100,150,250,350,∞]			
HZ	≥ 2	= 2	$m_{bb} < 150 \mathrm{GeV}$	$M_{T2}(\ell b\ell b) > 200 \text{ GeV}$	[100,150,250,∞]			
			Edge Si	gnal Regions				
Region	N _{jets}	$E_{\mathrm{T}}^{\mathrm{miss}}$	$M_{T2}(\ell\ell)$	tī likelihood	$m_{\ell\ell}$ binning [GeV]			
Edge Fit	≥ 2	> 150 GeV	> 80 GeV	-	> 20			
tī like	≥ 2	> 150 GeV	> 80 GeV	< 21	[20,60,86],[96,150,200,300,400,∞]			
non-tī like	≥ 2	> 150 GeV	> 80 GeV	> 21	[20,60,86],[96,150,200,300,400,∞]			

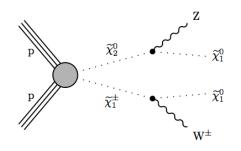


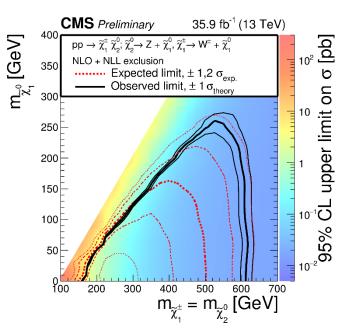

OS: On-Z results

SRA	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150-250	250+
	Template	208.5 ± 16.1	13.6±3.1	2.5 ± 0.9	3.3±2.4
	FS	$0.4^{+0.3}_{-0.2}$	$0.4^{+0.3}_{-0.2}$	$0.2^{+0.2}_{-0.1}$	$0.2^{+0.2}_{-0.1}$
	Rares	$1.1 {\pm} 0.4$	0.8 ± 0.3	$1.4 {\pm} 0.4$	2.4 ± 0.8
	Sum	210.0 ± 16.1	14.8 ± 3.2	4.0 ± 1.0	5.9 ± 2.5
	Data	210	23	5	4
SRAb	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150-250	250+
	Template	92.2±10.4	8.2±2.1	1.2 ± 0.5	0.5 ± 0.3
	FS	1.9 ± 0.7	2.3 ± 0.8	$1.7^{+0.7}_{-0.6}$	$0.1^{+0.2}_{-0.1}$
	Rares	1.9 ± 0.4	1.9 ± 0.4	2.0 ± 0.5	1.8 ± 0.6
	Sum	96.0 ± 10.4	12.4 ± 2.3	4.9 ± 1.0	2.5 ± 0.7
	Data	96	14	7	1
SRB	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150-250	250+
	Template	130.1±12.8	12.8 ± 2.3	0.9 ± 0.3	$0.4 {\pm} 0.2$
	FS	0.3 ± 0.2	$0.4^{+0.3}_{-0.2}$	$0.4^{+0.3}_{-0.2}$	$0.1^{+0.2}_{-0.1}$
	Rares	0.6 ± 0.2	0.3 ± 0.1	0.7 ± 0.2	1.2 ± 0.4
	Sum	131.0 ± 12.8	13.6 ± 2.4	2.0 ± 0.5	$1.6^{+0.5}_{-0.4}$
	Data	131	10	4	0
SRBb	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150-250	250+
	Template	37.9±6.7	7.7±3.1	4.0 ± 3.3	0.1 ± 0.1
	FS	$0.7^{+0.4}_{-0.3}$	$1.4^{+0.6}_{-0.5}$	$1.1^{+0.5}_{-0.4}$	$0.2^{+0.2}_{-0.1}$
	Rares	1.3 ± 0.4	2.0 ± 0.5	2.3 ± 0.6	1.0 ± 0.3
	Sum	40.0 ± 6.8	11.1 ± 3.2	7.4 ± 3.4	$1.3^{+0.4}_{-0.3}$
	Data	40	10	5	0
SRC	E _T ^{miss} [GeV]	50-100	100-150	150+	
	Template	23.8±5.5	1.2 ± 0.4	0.1 ± 0.1	
	FS	$0.1^{+0.2}_{-0.1}$	$0.4^{+0.3}_{-0.2}$	$0.1^{+0.2}_{-0.1}$	
	Rares	0.2 ± 0.1	0.1 ± 0.1	0.5 ± 0.2	
	Sum	24.0±5.5	1.7±0.5	$0.7^{+0.3}_{-0.2}$	
	Data	24	4	0	
SRCb	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150+	
	Template	9.9±3.7	0.1±0.5	0.0 ± 0.3	
	FS	$0.1^{+0.2}_{-0.1}$	$0.0^{+0.1}_{-0.0}$	0.3 ± 0.2	
	Rares	0.0 ± 0.1	0.6 ± 0.2	0.6 ± 0.2	
	Sum	10.0±3.7	$0.8 {\pm} 0.5$	$0.9^{+0.5}_{-0.4}$	
	Data	10	2	2	
				. 4 .4	

- Template prediction normalized in 1st bin
- No significant deviation Christian Schomakers (RWTH Aachen)



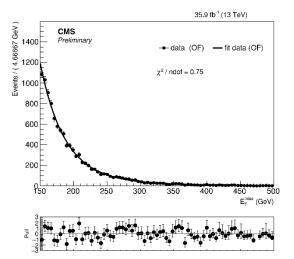


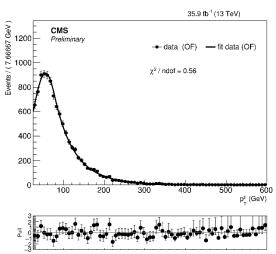

OS: Electroweak results & interpretation

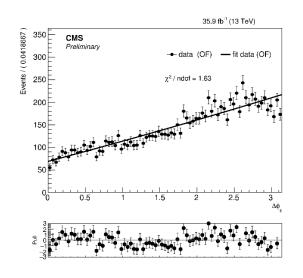
WZ/ZZ	$E_{\rm T}^{\rm miss}$ [GeV]	50-100	100-150	150-250	250-350	350+
	Template	773.2±31.9	29.3 ± 4.4	2.9±2.1	1.0 ± 0.7	0.3 ± 0.3
	FS	$9.4{\pm}3.0$	11.1 ± 3.6	3.2 ± 1.1	$0.1^{+0.2}_{-0.1}$	$0.1^{+0.2}_{-0.1}$
	Rares	$10.4{\pm}2.6$	14.5 ± 4.0	15.5 ± 5.1	5.0 ± 1.8	2.2 ± 0.9
	Sum	793.0 ± 32.2	54.9 ± 7.0	21.6 ± 5.6	6.0 ± 1.9	2.5 ± 0.9
	Data	793	57	29	2	0
HZ	E _T miss [GeV]	50-100	100-150	150-250	250+	•
	Template	76.7 ± 9.4	$2.9{\pm}2.4$	0.3 ± 0.2	0.1 ± 0.1	
	FS	$4.2 {\pm} 1.4$	$4.0 {\pm} 1.4$	$4.7{\pm}1.6$	0.9 ± 0.4	
	Rares	1.1 ± 0.3	$0.7{\pm}0.2$	0.6 ± 0.2	0.3 ± 0.1	
	Sum	82.0 ± 9.5	7.6 ± 2.8	5.6 ± 1.6	1.3 ± 0.4	
	Data	82	9	5	1	

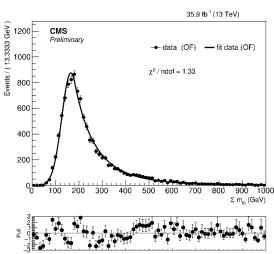
- Template prediction normalized in 1st bin
- No significant deviation
- Highest bins in WZ/ZZ region causes limits to be stronger than expected

OS: tt likelihood discriminator

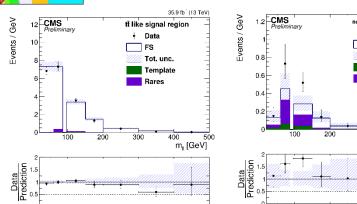

Construct likelihood out of four variables that are characteristic for dileptonic $t\bar{t}$:


- $ullet p_{
 m T}^{miss}$
- Dilepton $p_{
 m T}$
- $\Delta \phi(\ell \ell)$
- sum of $m_{\ell b}$'s ($m_{\ell j}$'s if < 2 b-jets)

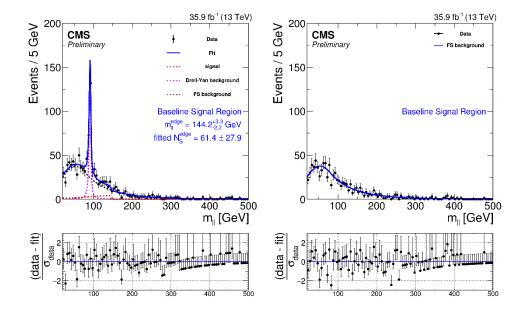

Evaluate shapes in DF data


Cross check with tt MC

Choose arbitrary 95%/5% bins



OS: Off-Z results


35.9 fb (13 TeV)

m_{ii} [GeV]

Mass range [GeV]	FS	Template	Rares	Sum	Observed			
t ī like								
20-60	$290.9_{-19.7}^{+20.7}$	$0.4{\pm}0.3$	$1.4 {\pm} 0.5$	$292.7_{-19.7}^{+20.7}$	273			
60-86	$180.5^{+15.7}_{-14.7}$	$0.9 {\pm} 0.7$	8.8±3.4	$190.1^{+16.1}_{-15.1}$	190			
96-150	$175.5^{+15.4}_{-14.4}$	$1.1 {\pm} 0.9$	6.0 ± 2.4	$182.7^{+15.7}_{-14.6}$	192			
150-200	$73.3^{+10.4}_{-9.2}$	$0.1 {\pm} 0.1$	$0.4{\pm}0.2$	$73.9^{+10.4}_{-9.2}$	66			
200-300	$46.9^{+8.4}_{-7.3}$	0.1±0.1	0.3 ± 0.1	$47.3^{+8.4}_{-7.3}$	42			
300-400	$18.5^{+5.7}_{-4.5}$	$0.0 {\pm} 0.0$	0.0 ± 0.0	$18.6^{+5.7}_{-4.5}$	11			
>400	$4.3_{-2.1}^{+3.4}$	0.0±0.0	0.1 ± 0.0	$4.5^{+3.4}_{-2.1}$	4			
non-t t like								
20-60	$3.3^{+3.2}_{-1.8}$	0.7±0.5	$1.4{\pm}0.5$	$5.3^{+3.3}_{-1.9}$	6			
60-86	$3.3^{+3.2}_{-1.8}$	1.6±1.3	6.9±2.7	$11.8^{+4.4}_{-3.5}$	19			
96-150	$6.6^{+3.9}_{-2.6}$	1.9±1.5	6.8±2.7	$15.3^{+5.0}_{-4.1}$	28			
150-200	$5.5^{+3.7}_{-2.4}$	0.2±0.3	0.7±0.3	$6.4^{+3.7}_{-2.4}$	7			
200-300	$3.3^{+3.2}_{-1.8}$	$0.2 {\pm} 0.2$	0.5±0.2	$3.9^{+3.2}_{-1.8}$	4			
300-400	$3.3_{-1.8}^{+3.2}$	$0.1 {\pm} 0.1$	0.2 ± 0.1	$3.5^{+3.2}_{-1.8}$	0			
>400	$1.1^{+2.5}_{-0.9}$	$0.1 {\pm} 0.1$	$0.4{\pm}0.2$	$1.6^{+2.5}_{-0.9}$	5			
	Super sig	nal regions (non-t t like)				
20-86	$6.5^{+3.9}_{-2.6}$	2.3±1.5	8.3±3.2	$17.1^{+5.3}_{-4.4}$	25			
>96	$19.6^{+5.8}_{-4.6}$	2.4±1.6	8.5±3.4	$30.6^{+7.0}_{-6.0}$	44			

Drell–Yan	191 ± 19
OF yield	768 ± 24
$R_{\rm SF/OF}$	1.07 ± 0.03
Signal events	61.4 ± 27.9
$m_{\ell\ell}^{ m edge}$	144.2 ^{+3.3} _{-2.2} GeV
Local significance	2.3 σ
Global significance	1.5σ

LS: Signal regions

HH

Signal regions split according
to lepton p_{T} :

- Both $> 25 \text{ GeV} \rightarrow \text{HH}$
- One 10—25 GeV → HL
- Both 10—25 GeV → LL

$ \begin{array}{ c c c c } \hline N_b & m_1^{min} (GeV) & E_p^{ibs} (GeV) & N_{pes} & H_T < 300 GeV & H_T \in [300,1125] GeV & H_T \in [1125,1300] GeV & H_T \in [1300,1600] GeV & H_T > 1600 GeV \\ \hline & & & & & & & & & & & \\ \hline & & & & &$									
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	N_{b}	m _T min (GeV)	E _T miss (GeV)	$N_{\rm jets}$	$H_{\rm T} < 300{\rm GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} \in [1125, 1300] \text{GeV}$	$H_{\rm T} \in [1300, 1600] \text{GeV}$	$H_{\rm T} > 1600{\rm GeV}$
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50 - 200		SR1				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		~120	30 - 200						
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		\120	200 — 300						
	0		200 - 300						
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50 - 200		SR3	SR8 (++) / SR9 ()			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		>120							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$,	200 - 300			SR10			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$					CD44	CD12			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			50 - 200		SKII				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<120							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$			200 - 300						
	1	1							
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		50 - 200		SR14 ()	3R20 (++) / 3R21 ()				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		>120				SR22	SR46 (++) /	SR48 (++) /	SR50 (++) /
$ 2 = \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $			200 - 300				\ , , .	, , , ,	
$ 2 = \begin{bmatrix} <120 & & & & \geq 5 \\ 200 - 300 & & & 2.4 \\ & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 2 \\ \hline \\ 201 & & & & \\ \hline \\ 201 & & & $					SR23	SR24	1	,	,
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		-120		≥5		SR27 (++) / SR28 ()			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		<120	200 200			SR29 (++) / SR30 ()			
	2		200 – 300		SP25 (++) /				
			50 - 200			SR32 (++) / SR33 ()			
		>120	30 - 200		3R20 ()				
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		7 120	200 - 300			SR34			
				≥5					
≥3		<120		>2					
>120 50 - 300 ≥2 SR40 SR41	≥3		200 – 300	_	SR36 ()	SR39			
		>120	50 - 300	≥2	SR40	SR41			
SR44 (++) / SR45 ()	inclusivo	inglucius		>2	_		SR42 (++) / S	SR43 ()	
	niciusive	niciusive	>500	22	_		SR44 (++) / S	SR45 ()	

HL

$N_{\rm b}$	m _T ^{min} (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	$N_{\rm jets}$	$H_{\mathrm{T}} < 300\mathrm{GeV}$	$H_{\rm T} \in [300, 1125] {\rm GeV}$	$H_{\rm T} \in [1125, 1300] {\rm GeV}$	$H_{\rm T} > 1300{ m GeV}$	
		50 – 200		SR1	SR2			
0	<120	30 – 200	≥5		SR4			
U	120	200 - 300	2-4	SR3	SR5 (++) / SR6 ()			
		200 500	≥5		SR7			
		50 - 200	2-4	SR8	SR9			
1	<120	200	≥5	SR10 (++) /	SR12 (++) / SR13 ()			
1 120	200 - 300	2-4	SR11 ()	SR14 (++) / SR15 ()	_			
			≥5	, ,	SR16 (++) / SR17 ()	SR38 (++) / SR39 ()	SR40 (++) /	
		50 - 200	2-4	SR18	SR19		SR41 ()	
2	<120		≥5	SR20 (++) /	SR22 (++) / SR23 ()	\ /	\	
		200 - 300	2-4	SR21 ()	SR24 (++) / SR25 ()			
		50 - 200	≥5	SR27 (++) /	SR26 SR29 (++) / SR30 ()			
≥3	<120	200 - 200	≥2	SR27 (++) / SR28 ()	SR29 (++) / SR30 ()			
inclusive	>120	50 - 300	>2	SR32	SR33			
niciusive	/120		<u> </u>	3132		P24 () / CD25 ()		
inclusive	inclusive	300 - 500	≥2	_	SR34 (++) / SR35 ()			
Metasive Metasive >500 22 — SR36 (++) / SR37 (-)								

LL

$N_{\rm b}$	$m_{\mathrm{T}}^{\mathrm{min}}$ (GeV)	H _T (GeV)	$E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 200]\mathrm{GeV}$	$E_{\mathrm{T}}^{\mathrm{miss}} > 200\mathrm{GeV}$
0	<120	>300	SR1	SR2
1			SR3	SR4
2			SR5	SR6
≥3			SR7	
Inclusive	>120		SR8	

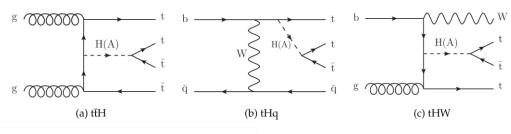
LS: Results

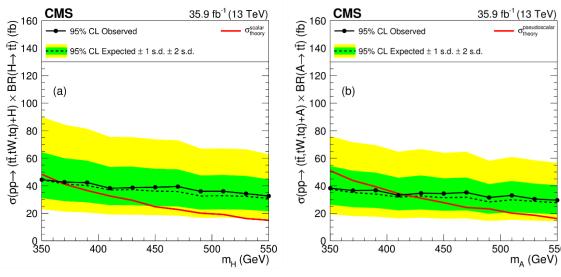
	HH regions		HL regions		LL regions		
	Expected SM	Observed	Expected SM	Observed	Expected SM	Observed	
SR1	468 ± 98	435	419 ± 100	442	12.0 ± 3.9	12	
SR2	162 ± 25	166	100 ± 20	101	1.88 ± 0.62	3	
SR3	24.4 ± 5.4	30	9.2 ± 2.4	6	15.5 ± 4.7	17	
SR4	17.6 ± 3.0	24	15.0 ± 4.5	13	1.42 ± 0.69	4	
SR5	17.8 ± 3.9	22	7.3 ± 1.5	14	4.2 ± 1.4	5	
SR6	7.8 ± 1.5	6	4.1 ± 1.2	5	0.84 ± 0.48	2	
SR7	1.96 ± 0.47	2	1.01 ± 0.28	0	0.95 ± 0.52	0	
SR8	4.58 ± 0.81	5	300 ± 82	346	0.09 ± 0.07	0	
SR9	3.63 ± 0.75	3	73 ± 17	95			
SR10	2.82 ± 0.56	3	2.30 ± 0.61	1			
SR11	313 ± 87	304	2.24 ± 0.87	1			
SR12	104 ± 20	111	12.8 ± 3.3	12			
SR13	9.5 ± 1.9	13	8.9 ± 2.3	8			
SR14	8.7 ± 2.0	11	4.5 ± 1.3	5			
SR15	14.4 ± 2.9	17	4.7 ± 1.6	4			
SR16	12.7 ± 2.6	10	2.3 ± 1.1	1			
SR17	7.3 ± 1.2	11	0.73 ± 0.29	1			
SR18	3.92 ± 0.79	2	54 ± 12	62			
SR19	3.26 ± 0.74	3	23.7 ± 4.9	24			
SR20	2.6 ± 2.7	4	0.59 ± 0.17	2			
SR21	3.02 ± 0.75	3	0.34 ± 0.20	1			
SR22	2.80 ± 0.57	1	5.2 ± 1.2	9			
SR23	70 ± 12	90	4.9 ± 1.4	6			
SR24	35.7 ± 5.9	40	0.97 ± 0.27	0			
SR25	3.99 ± 0.73	2	1.79 ± 0.74	0			
SR26	2.68 ± 0.80	0	1.01 ± 0.27	1			
SR27	9.7 ± 1.8	9	1.03 ± 0.44	1			
SR28	7.9 ± 2.5	8	1.33 ± 0.61	0			
SR29	2.78 ± 0.58	1	2.89 ± 0.99	3			
SR30	1.86 ± 0.38	1	2.24 ± 0.79	2			
SR31	2.20 ± 0.54	1	0.27 ± 0.30	1			
SR32	1.85 ± 0.39	5	0.79 ± 0.33	1			
SR33	1.20 ± 0.32	0	0.53 ± 0.13	0			
SR34	1.81 ± 0.42	3	6.3 ± 1.3	6			
SR35	1.98 ± 0.61	1	2.92 ± 0.87	3			
SR36	1.43 ± 0.37	2	0.51 ± 0.15	3			
SR37	4.2 ± 1.3	2	0.15 ± 0.07	0			
SR38	3.04 ± 0.68	4	1.07 ± 0.33	3			
SR39	0.63 ± 0.17	1	0.81 ± 0.47	0			
SR40	0.29 ± 0.34	0	1.54 ± 0.50	4			
SR41	0.80 ± 0.22	3	1.23 ± 0.53	1			
SR42	13.4 ± 1.9	19					
SR43	8.0 ± 3.0	8					
SR44	3.33 ± 0.74	3					
SR45	0.94 ± 0.26	1					
SR46	2.92 ± 0.50	3					
SR47	1.78 ± 0.42	3					
SR48	1.95 ± 0.39	5					
SR49	1.23 ± 0.30	3					
SR50	1.46 ± 0.31	0					
SR51	0.74 ± 0.18	0					

Aggregate inclusive signal regions

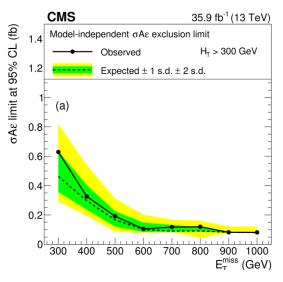
SR	Leptons	N _{jets}	$N_{\rm b}$	H _T (GeV)	E _T ^{miss} (GeV)	$m_{\mathrm{T}}^{\mathrm{min}}$ (GeV)	SM expected	Observed	N _{obs,UL}
InSR1		≥2	0	≥1200	≥50	_	4.00 ± 0.79	10	12.35
InSR2		≥2	≥2	≥1100	≥50	_	3.63 ± 0.71	4	5.64
InSR3		≥2	0	_	≥450	_	3.72 ± 0.83	4	5.62
InSR4		≥2	≥2	_	≥300	_	3.32 ± 0.81	6	8.08
InSR5		≥2	0		≥250	≥120	1.68 ± 0.44	2	4.46
InSR6	HH	≥2	≥2	_	≥150	≥120	3.82 ± 0.76	7	9.06
InSR7		≥2	0	≥900	≥200	_	5.6 ± 1.1	10	10.98
InSR8		≥2	≥2	≥900	≥200	_	5.8 ± 1.3	9	9.77
InSR9		≥7	—	_	≥50	_	10.1 ± 2.7	9	7.39
InSR10		\geq 4	—	_	≥50	≥120	15.2 ± 3.5	22	16.73
InSR11		≥2	≥3	_	≥50	_	13.3 ± 3.4	17	13.63
InSR12		≥2	0	≥700	≥50	_	3.6 ± 2.5	3	4.91
InSR13	LL	≥2	_	_	≥200	_	4.9 ± 2.9	10	11.76
InSR14	LL	≥5	_	_	≥50	_	7.3 ± 5.5	6	6.37
InSR15		≥2	≥3	_	≥50	_	1.06 ± 0.99	0	2.31

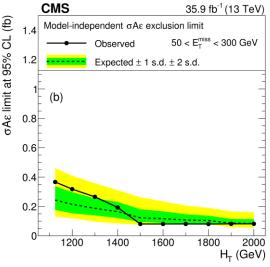
Aggregate exclusive signal regions


SR	Leptons	N _{jets}	$N_{\rm b}$	$E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV)	H_{T} (GeV)	$m_{\mathrm{T}}^{\mathrm{min}}$ (GeV)	SM expected	Observed
ExSR1		≥2	0	50-300	<1125	<120 for $H_{\rm T} > 300$	700 ± 130	685
ExSR2		≥2	0	50-300	300-1125	≥120	11.0 ± 2.2	11
ExSR3		≥2	1	50-300	<1125	<120 for $H_{\rm T} > 300$	477 ± 120	482
ExSR4		≥2	1	50-300	300-1125	≥120	8.4 ± 3.5	8
ExSR5		≥2	2	50-300	<1125	<120 for $H_{\rm T} > 300$	137 ± 25	152
ExSR6	HH	≥2	2	50-300	300-1125	≥120	4.9 ± 1.2	8
ExSR7		≥2	≥3	50-300	<1125	<120 for $H_{\rm T} > 300$	11.6 ± 3.1	10
ExSR8		≥2	≥3	50-300	300-1125	≥120	0.8 ± 0.24	3
ExSR9		≥2	_	≥300	≥300	_	25.7 ± 5.4	31
ExSR10		≥2	_	50-300	≥1125	_	10.1 ± 2.2	14
ExSR11		≥2	_	50-300	<1125	<120	1070 ± 250	1167
ExSR12	HL	≥2	—	50-300	<1125	≥120	1.33 ± 0.46	1
ExSR13	TIL	≥2	_	≥300	≥300	_	9.9 ± 2.5	12
ExSR14		≥2	—	50-300	≥1125	_	4.7 ± 1.8	8
ExSR15	LL	≥2	_	≥50	≥300	_	37 ± 12	43



LS: Additional interpretations




(pseudo-) scalar boson production in association with top quarks

Model independent limits

Multilepton: Results

Off-Z signal regions

1- 1	II (C-V)	Emiss (C-XI)	M (C-V)	F1	011	SR
b-tags	H _T (GeV)	E _T ^{miss} (GeV)	M _T (GeV)	Expected	Observed	
	60-400	50-150	< 120	$206 \pm 6 \pm 35$	201	SR1a
			≥ 120	$1.4 \pm 0.5 \pm 0.2$	3	SR1b
		150-300	< 120	$25.9 \pm 2.1 \pm 4.3$	24	SR2a
0 b-tags			≥ 120	$0.84 \pm 0.34 \pm 0.12$	0	SR2b
0 b-tags		50-150	< 120	$15.6 \pm 1.6 \pm 2.1$	21	SR3a
	400-600	30-130	≥ 120	$0.19 \pm 0.09 \pm 0.02$	0	SR3b
	400-600	150-300	< 120	$6.0 \pm 0.8 \pm 0.7$	5	SR4a
		130-300	≥ 120	$0.19 \pm 0.09 \pm 0.04$	0	SR4b
	60-400	50-150		$202\pm 6\pm 44$	191	SR5
1 h to oo		150-300	inclusive	$25.6 \pm 1.9 \pm 4.6$	25	SR6
1 b-tags	400-600	50-150	litciusive	$15.4 \pm 1.3 \pm 2.2$	21	SR7
		150-300		$7.3\pm1\pm1.1$	7	SR8
	60-400	50-150	inclusive	$47.7 \pm 2.8 \pm 7.6$	51	SR9
Oh ta oo		150-300		$5.3 \pm 0.5 \pm 0.6$	5	SR10
2 b-tags	400-600	50-150		$5.8 \pm 0.7 \pm 0.8$	9	SR11
		150-300		$2.9 \pm 0.5 \pm 0.4$	2	SR12
≥ 3 b-tags	60-600	50-300	inclusive	$3.9 \pm 0.7 \pm 0.6$	6	SR13
	≥ 600	FO 1FO	< 120	$14.4 \pm 1.2 \pm 1.6$	20	SR14a
		50-150	≥ 120	$0.28 \pm 0.14 \pm 0.04$	0	SR14b
. 1 .		150-300	< 120	$12.1 \pm 1.4 \pm 1.6$	10	SR15a
inclusive			≥ 120	$0.40 \pm 0.12 \pm 0.05$	0	SR15b
	≥ 60	≥ 60 ≥ 300	< 120	$12.1 \pm 1.5 \pm 1.9$	7	SR16a
			≥ 120	$0.70 \pm 0.25 \pm 0.11$	0	SR16b

On-Z signal regions

b-tags	H _T (GeV)	E _T miss (GeV)	M _T (GeV)	Expected	Observed	SR
_	60-400	50-150	< 120	$266 \pm 5 \pm 39$	241	SR1a
			≥ 120	$30\pm2\pm4$	33	SR1b
		150-300	< 120	$53.8 \pm 2.2 \pm 8$	61	SR2a
0 b-tags			≥ 120	$5.69 \pm 0.76 \pm 0.69$	9	SR2b
0 b-tags		50-150	< 120	$44.6 \pm 1.9 \pm 6.5$	52	SR3a
	400-600	30-130	≥ 120	$5.1 \pm 0.6 \pm 0.7$	6	SR3b
	400-600	150-300	< 120	$16.6 \pm 1.3 \pm 2.5$	17	SR4a
		130-300	≥ 120	$1.43 \pm 0.33 \pm 0.2$	1	SR4b
	60-400	50-150		$115.70 \pm 3.50 \pm 15.23$	115	SR5
1 b-tags		150-300	inclusive	$21.7 \pm 1.2 \pm 2.8$	19	SR6
1 b-tags	400-600	50-150	inclusive	$25.2 \pm 1.2 \pm 3.6$	25	SR7
		150-300		$7.5\pm0.8\pm1$	9	SR8
	60-400	50-150		$47\pm1.6\pm7.4$	64	SR9
2 h taga		150-300	inclusive	$7.2\pm0.8\pm1.2$	6	SR10
2 b-tags	400-600	50-150	inclusive	$11.7 \pm 1 \pm 2.1$	12	SR11
		150-300		$2.6 \pm 0.4 \pm 0.4$	6	SR12
≥ 3 b-tags	60-600	50-300	inclusive	$4.7 \pm 0.5 \pm 0.9$	5	SR13
	≥ 600	E0 150	< 120	$33\pm2\pm4$	42	SR14a
inclusive		50-150	≥ 120	$4.6 \pm 0.6 \pm 0.6$	6	SR14b
		150-300	< 120	$15.8 \pm 1.2 \pm 2$	13	SR15a
			≥ 120	$1.9 \pm 0.3 \pm 0.2$	4	SR15b
	≥ 60	≥ 300	< 120	$19.1 \pm 1.1 \pm 2.8$	23	SR16a
	≥ 60		≥ 120	$2.28 \pm 0.35 \pm 0.26$	5	SR16b