Searches for supersymmetry via strong production in events with one or more leptons at CMS ### **Christian Schomakers** I. Physikalisches Institut B, RWTH Aachen on behalf of the CMS Collaboration July 6th, 2017 SPONSORED BY THE #### LHC and CMS performed very well last year • 35.9 fb^{-1} for us to analyze #### A lot of work by many people to present 2016 SUSY results at Moriond Most are currently being turned into papers #### Leptonic final states of particular interest: - Light stops in "natural" SUSY models + flavor conservation → top quarks → leptons - EWK models : Weak mass limits, difficult to discover in hadronic final states - Measuring electrons and muons is relatively easy - QCD background is strongly suppressed - Remaining background processes well understood, can often be estimated from data #### Talks on leptonic CMS SUSY searches: - This talk: Strongly produced SUSY models - Constantin's talk later: Compressed spectra and decays via Higgs bosons - Indara's talk later: Third generation squarks - Miaoyuan's talk tomorrow: EWK produced SUSY ## Strongly produced leptonic final states - Strong SUSY production and R-parity conservation \rightarrow jets and p_{T}^{miss} - Single/uncorrelated leptons from W boson decays - Correlated lepton signatures from Z boson or sleptons in decay chain - Only electrons and muons considered here ## Covered analyses #### Single lepton searches (1ℓ large jets, $1\ell \Delta \varphi$): CMS-SUS-16-037: Search for supersymmetry in pp collisions at $\sqrt{s} = 13$ TeV in the single-lepton final state using the sum of masses of large-radius jets arXiv:1705.04673 CMS-PAS-SUS-16-042: Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s} = 13$ TeV with 2016 data #### Dilepton searches (OS, LS): CMS-PAS-SUS-16-034: Search for new phenomena in final states with two opposite-sign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV CMS-SUS-16-035: Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV. arXiv:1704.07323 #### Multilepton search: CMS-PAS-SUS-16-041: Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-proton collision data at $\sqrt{s} = 13$ TeV ## Single lepton search with large jets Search for supersymmetry in pp collisions at $\sqrt{s}=13$ TeV in the single-lepton final state using the sum of masses of largeradius jets (CMS-SUS-16-037) arXiv:1705.04673 ## 1ℓ large jets: Background estimation #### Observables and selection: - Selection: $(H_{\mathrm{T}}+p_{\mathrm{T}}^{\ell})>$ 500 GeV, $p_{\mathrm{T}}^{miss}>$ 200 GeV, 6+ jets, 1+ b-jets - $m_{ m T}$ to supress semileptonic ${ m t}ar{{ m t}}$ - Recluster jets and leptons to large jets (R=1.4 cone) - $M_J = Scalar sum of masses of large jets$ #### Background estimation: - $\bullet \quad N_{R4} = \kappa \frac{N_{R2}}{N_{R1}} N_{R3}$ - κ : MC corrections for residual $m_{ ext{T}}$ -M $_I$ correlations - Fit in R1-3 for background prediction and global fit on all regions for interpretation ## 1ℓ large jets: Results and interpretation | N _{jets} | $N_{\rm b}$ | NC | С | К | Pred. | Obs. | |-------------------|-------------|-----|----------------------------------|---------------------------------------|----------------|------------| | | | 20 | 0 < p | $_{ m T}^{ m miss} \leq 350{ m C}$ | eV | | | 6-8 | 1 | 0.4 | 1.9 | 1.2 ± 0.2 | 85 ± 14 | 106 | | 6-8 | 2 | 0.6 | 3.0 | 1.2 ± 0.2 | 55.1 ± 9.3 | <i>7</i> 5 | | 6-8 | ≥ 3 | 0.6 | 2.2 | 1.5 ± 0.2 | 16.4 ± 3.0 | 16 | | ≥ 9 | 1 | 0.2 | 1.6 | 1.0 ± 0.2 | 6.5 ± 1.5 | 11 | | ≥9 | 2 | 0.3 | 2.1 | 1.2 ± 0.3 | 7.6 ± 1.9 | 11 | | ≥ 9 | ≥ 3 | 0.4 | 3.1 | 1.4 ± 0.3 | 2.3 ± 0.7 | 2 | | | | 35 | 0 < p | $_{\rm T}^{\rm miss} \leq 500{\rm C}$ | eV | | | 6-8 | 1 | 0.7 | 1.1 | 1.0 ± 0.3 | 17.4 ± 6.6 | 25 | | 6-8 | 2 | 0.9 | 1.3 | 1.1 ± 0.4 | 13.7 ± 5.3 | 10 | | 6-8 | ≥ 3 | 0.8 | 0.9 | 1.3 ± 0.4 | 3.8 ± 1.6 | 1 | | ≥ 9 | 1 | 0.3 | 1.0 | 1.1 ± 0.4 | 1.3 ± 0.6 | 2 | | ≥9 | 2 | 0.5 | 1.1 | 0.8 ± 0.3 | 1.6 ± 0.8 | 2 | | ≥ 9 | ≥ 3 | 0.7 | 2.1 | 1.2 ± 0.5 | 0.6 ± 0.4 | 0 | | | | | $p_{\mathrm{T}}^{\mathrm{miss}}$ | > 500 GeV | | | | 6-8 | 1 | 2.5 | 0.6 | 1.0 ± 0.3 | 1.9 ± 1.5 | 8 | | 6-8 | 2 | 3.6 | 1.0 | 1.0 ± 0.4 | 0.9 ± 0.7 | 4 | | 6-8 | ≥ 3 | 3.2 | 0.4 | 1.5 ± 0.6 | 0.4 ± 0.4 | 1 | | ≥ 9 | 1 | 1.0 | 0.7 | 1.0 ± 0.4 | 0.2 ± 0.2 | 2 | | ≥9 | 2 | 1.8 | 1.2 | 1.0 ± 0.4 | 0.1 ± 0.1 | 0 | | ≥9 | ≥ 3 | 2.3 | 1.7 | 3.1 ± 1.5 | 0.1 ± 0.1 | 0 | | | | | | | | | - Yields in R1 and R3 not split by (b-) jet multiplicity - ightarrow Results in each p_{T}^{miss} region correlated - Agreement within 2 σ in single bins and combined $p_{\mathrm{T}}^{miss}>$ 500 GeV bin - Gluino masses up to 1.9 TeV excluded ## Single lepton search with $\Delta \phi$ Search for supersymmetry in events with one lepton and multiple jets in proton-proton collisions at $\sqrt{s}=13$ TeV with 2016 data (CMS-PAS-SUS-16-042) ## 1ℓ Δφ: Background estimation #### Observables and selection: - Selection: $L_{\mathrm{T}}=p_{\mathrm{T}}^{miss}$ + $p_{\mathrm{T}}^{\ell}>$ 250 GeV, 5+ jets, $H_{\mathrm{T}}>$ 500 GeV #### Background estimation: • $$N_{MB}^{SR} = \kappa \frac{N_{SB}^{SR}}{N_{SB}^{CR} - N_{QCD,SB}^{CR}} N_{MB}^{CR}$$ - κ : MC corr. for differences in (b-) jet multiplicity between side band (SB) and main band (MB) - Search performed in b-tagged (tt dominated) and b-veto (W+jets and tt) regions - QCD est. from tight-to-loose ratio # CMS Prelim ## 1ℓ Δφ: Results and interpretation ## Opposite-sign, same-flavor dilepton search Search for new phenomena in final states with two oppositesign, same-flavor leptons, jets, and missing transverse momentum in pp collisions at $\sqrt{s} = 13$ TeV (CMS-PAS-SUS-16-034) ## OS: Background estimation #### Search strategies and selection: - Selection: $p_{\mathrm{T}}^{miss} >$ 100 (150) GeV, 2+ jets - $\rm M_{T2} > 80$ GeV to supress most of the dominant $\rm t\bar{t}$ background - Resonant contribution on the Z peak ($|m_{\ell\ell} m_Z| < 5$ GeV): - Binning in (b-) jet multiplicity and $p_{ m T}^{miss}$ - Edge like feature in $m_{\ell\ell}$ outside the Z window: - Kinematic fit to search for edge shaped feature in full mass range - Counting experiment in mass and tt likelihood bins #### Background estimation: - Flavor-symmetric background: - From $e\mu$ control region - Corrected by $R_{SF/DF}$ for differences in efficiencies - Z+jets background - No neutrinos, p_{T}^{miss} from mismeasured jets - Estimated with p_{T}^{miss} templates from γ +jets sample - Rare backgrounds ($Z+\nu$) - From MC - WZ, ZZ, and ttZ validated in control regions OS: Results and interpretation RWTHAACHEN 5 UNIVERSITY Christian Schomakers (RWTH Aachen) #### on-Z: - No significant deviation - Limits on GMSB gluino pair production model up to 1.8 TeV #### off-Z: - 2σ deviation in non $t\bar{t}$ like, $m_{\ell\ell}$ 96-150 GeV bin - Best fit at 144 GeV (61 ± 28 ev.) - Sbottom limits up to 1.2 TeV - · Limit contour reflects mass binning Strong CMS SUSY searches with leptons July 6th, 2017 ## Like-sign dilepton search Search for physics beyond the standard model in events with two leptons of same sign, missing transverse momentum, and jets in proton-proton collisions at $\sqrt{s} = 13$ TeV (CMS-SUS-16-035) arXiv:1704.07323 ## LS: Background estimation #### Selection: - 1+ LS lepton pair ($m_{\ell\ell} > 8$ GeV), 2+ jets, $p_{\mathrm{T}}^{miss} >$ 50 GeV - Veto if additional loose lepton can be used for an OS pair with $m_{\ell\ell}<12$ GeV or $|m_{\ell\ell}-m_Z|<15$ GeV - Further binning in lepton $p_{\rm T}$, (b-) jet multiplicity, $H_{\rm T}$, $p_{\rm T}^{miss}$, $m_{\rm T}^{min}$ and split into ++ and -- lepton pairs #### Background estimation: - Non-prompt leptons: - Tight-to-loose ratio from control region - Rare SM processes with prompt LS pairs: - From MC - WZ and ttZ validated in control regions - Charge-misidentificatied electrons: - Misidentification rate taken from MC - Validated in control region and applied to OS data ## LS: Results and interpretation - No significant deviation in any of the SRs - Interpretet in a variety of SUSY models - Several compressed spectra - Further interpretations include (pseudo-)scalar boson production and model independent upper limits ## Multilepton search Search for new physics in events with multileptons and jets in 35.9 fb⁻¹ of proton-proton collision data at \sqrt{s} = 13 TeV (CMS-PAS-SUS-16-041) ## Multilepton: Background estimation #### Selection: - 3+ leptons, $m_{\ell\ell} > 12$ GeV for OSSF pairs, 2+ jets, $p_{\rm T}^{miss} >$ 50 GeV - On-Z regions: - OSSF pair with $|m_{\ell\ell}-m_Z|<15$ GeV - Binning in (b-) jet multiplicity, H_{T} , p_{T}^{miss} , $m_{\ell\ell}$ and m_{T} #### Background estimation: - Non-prompt leptons: - Dominant in off-Z regions - Tight-to-loose ratio from control region - Remaining backgrounds: - From MC - WZ and ttZ validated in control regions ## Multilepton: Results and interpretation - No significant deviation in any of the SRs - Interpretet in a variety of **SUSY** models CMS Preliminary 35.9 fb⁻¹ (13 TeV) CMS Preliminary 35.9 fb⁻¹ (13 TeV) m_{t.} [GeV] Different branching fractions tested - LHC and CMS performed extremely well in 2016 - CMS presented lots of (leptonic) SUSY searches at Moriond - Several already published as papers, many more to follow - Unfortunately, no sign for SUSY in any of the leptonic searches for strongly produced SUSY - Time for easy limit extension in simple final states is likely over - Might need to focus on more complex scenarios or those we lacked statistics for (compressed spectra, EWK models, boosted topologies, RPV ...) - Results on some of these scenarios later on or tomorrow ## Extras - Signal region definitions - Numerical results - Additional interpretations ## 1ℓ $\Delta \varphi$: b-tagged results | | | L_{T} | H_{T} | | Expected signal | T1tttt $m_{\widetilde{g}}/m_{\widetilde{g}^0}$ [TeV] | Predicted | 01 1 | |--------------|-------------|------------------|-------------------------|-------------------------------------|--|--|--|----------| | $n_{ m jet}$ | $n_{\rm b}$ | [GeV] | [GeV] | Bin name | (1.9,0.1) | (1.4,1.1) | background | Observed | | [6, 8] | = 1 | [250, 450] | [500, 1000] | NB1, LT12, HT01 | < 0.01 | 3.02 ± 0.24 | 206 ± 12 ± 9.4 | 194 | | [-, -] | | [,, | [1000, 1500] | NB1, LT12, HT23 | 0.03 ± 0.01 | 0.37 ± 0.08 | $53 \pm 7.4 \pm 3.6$ | 48 | | | | | > 1500 | NB1, LT12, HT4i | 0.07 ± 0.01 | 0.05 ± 0.03 | $18 \pm 4.2 \pm 0.5$ | 19 | | | | [450, 600] | [500, 1000] | NB1, LT3, HT01 | 0.03 ± 0.01 | 0.66 ± 0.11 | $13 \pm 2.5 \pm 0.9$ | 10 | | | | . , | [1000, 1500] | NB1, LT3, HT23 | 0.05 ± 0.01 | 0.27 ± 0.07 | $4.5 \pm 1.7 \pm 0.3$ | 6 | | | | | ≥ 1500 | NB1, LT3, HT4i | 0.09 ± 0.01 | 0.03 ± 0.02 | $1.7 \pm 1.0 \pm 0.3$ | 5 | | | | [600, 750] | [500, 1000] | NB1, LT4, HT01 | 0.04 ± 0.01 | 0.08 ± 0.04 | $4.0 \pm 1.5 \pm 0.5$ | 4 | | | | | [1000, 1500] | NB1, LT4, HT23 | 0.08 ± 0.01 | 0.35 ± 0.08 | $2.8 \pm 1.3 \pm 0.2$ | 5 | | | | | ≥ 1500 | NB1, LT4, HT4i | 0.17 ± 0.02 | 0.02 ± 0.02 | $1.8 \pm 1.2 \pm 0.2$ | 2 | | | | ≥ 750 | ≥ 500 | NB1, LT5i, HT0i | 1.01 ± 0.04 | 0.28 ± 0.07 | $2.6 \pm 1.1 \pm 0.2$ | 2 | | | = 2 | [250, 450] | [500, 1000] | NB2, LT12, HT01 | 0.01 ± 0.01 | 2.06 ± 0.20 | $147 \pm 9.4 \pm 5.5$ | 143 | | | | | [1000, 1500] | NB2, LT12, HT23 | 0.04 ± 0.01 | < 0.01 | $44 \pm 7.3 \pm 1.7$ | 37 | | | | | ≥ 1500 | NB2, LT12, HT4i | 0.13 ± 0.01 | < 0.01 | $11 \pm 2.7 \pm 0.7$ | 12 | | | | [450, 600] | [500, 1000] | NB2, LT3, HT01 | 0.02 ± 0.01 | 0.54 ± 0.10 | $9.4 \pm 2.1 \pm 0.8$ | 10 | | | | | [1000, 1500] | NB2, LT3, HT23 | 0.10 ± 0.01 | 0.17 ± 0.06 | $3.4 \pm 1.7 \pm 0.2$ | 9 | | | | | ≥ 1500 | NB2, LT3, HT4i | 0.19 ± 0.02 | < 0.01 | $1.4 \pm 0.8 \pm 0.2$ | 2 | | | | [600, 750] | [500, 1000] | NB2, LT4, HT01 | 0.03 ± 0.01 | < 0.01 | $2.4 \pm 1.2 \pm 0.4$ | 3 | | | | | [1000, 1500] | NB2, LT4, HT23 | 0.10 ± 0.01 | 0.26 ± 0.07 | $1.2 \pm 0.9 \pm 0.2$ | 1 | | | | | ≥ 1500 | NB2, LT4, HT4i | 0.24 ± 0.02 | 0.03 ± 0.02 | $1.1 \pm 0.8 \pm 0.2$ | 0 | | | | ≥ 750 | ≥ 500 | NB2, LT5i, HT0i | 1.50 ± 0.05 | 0.32 ± 0.08 | $0.42 \pm 0.34 \pm 0.05$ | 3 | | | ≥ 3 | [250, 450] | [500, 1000] | NB3i, LT12, HT01 | 0.01 ± 0.01 | 1.03 ± 0.14 | $33 \pm 2.9 \pm 1.5$ | 34 | | | | | [1000, 1500] | NB3i, LT12, HT23 | 0.06 ± 0.01 | < 0.01 | $11 \pm 2.0 \pm 0.5$ | 5 | | | | | ≥ 1500 | NB3i, LT12, HT4i | 0.13 ± 0.01 | < 0.01 | $2.9 \pm 0.9 \pm 0.3$ | 3 | | | | [450, 600] | [500, 1000] | NB3i, LT3, HT01 | 0.03 ± 0.01 | 0.29 ± 0.07 | $1.4 \pm 0.5 \pm 0.2$ | 2 | | | | | [1000, 1500] | NB3i, LT3, HT23 | 0.09 ± 0.01 | 0.20 ± 0.06 | $0.72 \pm 0.38 \pm 0.07$ | 1 | | | | | ≥ 1500 | NB3i, LT3, HT4i | 0.20 ± 0.02 | < 0.01 | $0.66 \pm 0.44 \pm 0.07$ | 0 | | | | ≥ 600 | ≥ 500 | NB3i, LT4i, HT0i | 1.85 ± 0.05 | 0.23 ± 0.06 | $1.7 \pm 0.7 \pm 0.2$ | 2 | | ≥ 9 | =1 | [250, 450] | [500, 1500] | NB1, LT12, HT03 | 0.01 ± 0.01 | 0.90 ± 0.12 | $7.9 \pm 0.9 \pm 0.7$ | 7 | | | | > 450 | ≥ 1500 | NB1, LT12, HT4i | 0.03 ± 0.01 | 0.02 ± 0.02 | $2.2 \pm 0.7 \pm 0.2$ | 1 | | | | ≥ 450 | [500, 1500] | NB1, LT3i, HT03 | 0.13 ± 0.01 | 0.72 ± 0.11 | $1.1 \pm 0.4 \pm 0.2$ | 0 | | | | [250 450] | ≥ 1500 | NB1, LT3i, HT4i | 0.38 ± 0.02 | 0.10 ± 0.04 | $0.50 \pm 0.26 \pm 0.06$ | 1 | | | = 2 | [250, 450] | [500, 1500] | NB2, LT12, HT03 | 0.02 ± 0.01 | 1.15 ± 0.14 | $7.3 \pm 0.8 \pm 0.5$ | 9 | | | | > 450 | ≥ 1500 | NB2, LT12, HT4i | 0.08 ± 0.01 | < 0.01 | $2.8 \pm 0.8 \pm 0.3$ | 4 | | | | ≥ 450 | [500, 1500] | NB2, LT3i, HT03 | $\begin{array}{cccc} 0.23 & \pm & 0.02 \\ 0.72 & \pm & 0.03 \end{array}$ | $\begin{array}{cccc} 0.83 & \pm & 0.12 \\ 0.20 & \pm & 0.05 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 2 | | | | [250, 450] | ≥ 1500 [500, 1500] | NB2, LT3i, HT4i
NB3i, LT12, HT03 | $ \begin{array}{cccc} 0.72 & \pm & 0.03 \\ 0.03 & \pm & 0.01 \end{array} $ | $\begin{array}{cccc} 0.20 & \pm & 0.05 \\ 0.79 & \pm & 0.11 \end{array}$ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 3 | | | ≥ 3 | [230, 430] | ≥ 1500 | NB3i, LT12, HT4i | 0.03 ± 0.01
0.13 ± 0.01 | 0.79 ± 0.11 < 0.01 | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0 | | | | > 450 | [500, 1500] | NB3i, LT3i, HT03 | 0.13 ± 0.01
0.31 ± 0.02 | 0.26 ± 0.06 | $0.83 \pm 0.34 \pm 0.07$
$0.33 \pm 0.16 \pm 0.07$ | 0 | | | | ≥ 450 | ≥ 1500 | NB3i, LT3i, HT4i | $\begin{array}{cccccccccccccccccccccccccccccccccccc$ | 0.26 ± 0.06
0.17 ± 0.05 | $0.05 \pm 0.16 \pm 0.07$
$0.05 \pm 0.05 \pm 0.01$ | 0 | | | | | ≥ 1500 | 1ND31, L131, H141 | 1.04 ± 0.04 | 0.17 ± 0.05 | 0.05 ± 0.05 ± 0.01 | U | ## 1ℓ Δφ: b-veto results | 11. | L_{T} | $H_{ m T}$ | Bin name | Signa | ıl T5 | qqqqW | $W m_{\widetilde{g}}/r$ | $m_{\widetilde{\chi}^0}$ [TeV] | Pre | edicte | ed | Observed | |--------------|------------------|--------------------|------------|-------|----------|-------|-------------------------|--------------------------------|------------|----------|-------|----------| | $n_{ m jet}$ | [GeV] | [GeV] | ви паше | 1 | .5/1. | | (1.9/0.1) | | background | | | Observed | | | [250, 250] | [500,750] | LT0, HT0 | 1.82 | <u>±</u> | 0.29 | < | 0.01 | 101.91 | <u>±</u> | 47.55 | 111 | | | [250, 350] | ≥ 750 ¹ | LT0, HT1i | 0.21 | \pm | 0.09 | 0.01 | \pm 0.01 | 76.73 | \pm | 16.19 | 100 | | | [250, 450] | [500, 750] | LT1, HT0 | 2.25 | ± | 0.32 | < | 0.01 | 24.43 | \pm | 14.78 | 25 | | | [350, 450] | ≥ 750 ¹ | LT1, HT1i | 0.29 | \pm | 0.11 | 0.04 | \pm 0.01 | 22.78 | \pm | 8.29 | 22 | | | | [500,750] | LT2, HT0 | 3.02 | \pm | 0.37 | < | 0.01 | 14.46 | \pm | 6.5 | 17 | | D | [450,650] | [750, 1250] | LT2, HT12 | 1.4 | \pm | 0.25 | 0.04 | \pm 0.02 | 12.13 | \pm | 4.68 | 10 | | | - | ≥ 1250 | LT2, HT3i | 0.08 | \pm | 0.06 | 0.25 | \pm 0.04 | 4.15 | \pm | 1.72 | 2 | | | | [500,750] | LT3i, HT0 | 0.74 | \pm | 0.18 | 0.01 | \pm 0.01 | 2.32 | \pm | 1.49 | 5 | | | ≥ 650 | [750, 1250] | LT3i, HT12 | 0.49 | \pm | 0.15 | 0.12 | \pm 0.03 | 5.79 | \pm | 1.96 | 6 | | | | ≥ 1250 | LT3i, HT3i | 0.14 | \pm | 0.07 | 1.15 | \pm 0.08 | 2.74 | \pm | 1.26 | 0 | | | [250, 250] | [500, 1000] | LT0, HT01 | 3.02 | 土 | 0.36 | < | 0.01 | 89.32 | \pm | 38.21 | 85 | | | [250, 350] | ≥ 1000 | LT0, HT2i | 0.31 | \pm | 0.1 | 0.09 | \pm 0.02 | 30.94 | \pm | 5.08 | 33 | | | [350, 450] | [500, 1000] | LT1, HT01 | 4.13 | 土 | 0.41 | 0.01 | \pm 0.01 | 18.91 | \pm | 10.89 | 31 | | | [330,430] | ≥ 1000 | LT1, HT2i | 0.52 | \pm | 0.14 | 0.14 | \pm 0.03 | 9.51 | \pm | 2.34 | 8 | | [6,7] | | [500,750] | LT2, HT0 | 3.63 | 土 | 0.39 | < | 0.01 | 5.71 | \pm | 3.31 | 13 | | [6, | [450,650] | [750, 1250] | LT2, HT12 | 3.79 | \pm | 0.39 | 0.03 | \pm 0.01 | 8.21 | \pm | 3.15 | 8 | | | | ≥ 1250 | LT2, HT3i | 0.36 | \pm | 0.12 | 0.47 | \pm 0.05 | 3.61 | \pm | 1.78 | 4 | | | | [500,750] | LT3i, HT0 | 0.89 | \pm | 0.19 | < | 0.01 | 0.79 | \pm | 0.53 | 3 | | | ≥ 650 | [750, 1250] | LT3i, HT12 | 1.77 | \pm | 0.26 | 0.15 | \pm 0.03 | 3.63 | \pm | 1.37 | 5 | | | | ≥ 1250 | LT3i, HT3i | 0.83 | \pm | 0.18 | 2.83 | \pm 0.12 | 1.83 | \pm | 0.86 | 1 | | | [250, 250] | [500, 1000] | LT0, HT01 | 0.88 | 土 | 0.18 | < | 0.01 | 6.96 | ± | 2.83 | 16 | | | [250, 350] | ≥ 1000 | LT0, HT2i | 0.26 | \pm | 0.09 | 0.03 | \pm 0.01 | 6.32 | \pm | 1.17 | 4 | | | [350, 450] | [500, 1000] | LT1, HT01 | 0.55 | 土 | 0.14 | < | 0.01 | 1.67 | ± | 0.77 | 3 | | ∞ | [330,430] | ≥ 1000 | LT1, HT2i | 0.72 | \pm | 0.15 | 0.11 | \pm 0.02 | 2.65 | \pm | 0.89 | 4 | | \wedge I | [450, 650] | [500, 1250] | LT2, HT02 | 2.07 | 土 | 0.26 | 0.01 | \pm 0.01 | 0.63 | \pm | 0.32 | 0 | | | [430,630] | ≥ 1250 | LT2, HT3i | 0.45 | \pm | 0.12 | 0.3 | \pm 0.04 | 0.68 | \pm | 0.35 | 1 | | | ≥ 650 | [500, 1250] | LT3i, HT02 | 0.97 | ± | 0.18 | 0.04 | \pm 0.01 | 0.27 | \pm | 0.23 | 1 | | | <u> </u> | ≥ 1250 | LT3i, HT3i | 1.12 | \pm | 0.18 | 1.37 | \pm 0.08 | 0.38 | \pm | 0.24 | 1 | ## OS: Signal region definitions | Strong on-Z Signal Regions | | | | | | | | | |---------------------------------|-------------------|----------------------------------|-----------------------------|--|--|--|--|--| | Region | $N_{\rm jets}$ | $N_{ ext{b-jets}}$ | H_{T} | $M_{T2}(\ell\ell)$ | E _T ^{miss} binning [GeV] | | | | | SRA b-veto | 2–3 | = 0 | > 500 GeV | > 80 GeV | [100,150,250,∞] | | | | | SRB b-veto | 4–5 | = 0 | > 500 GeV | > 80 GeV | [100,150,250,∞] | | | | | SRC b-veto | ≥ 6 | = 0 | - | > 80 GeV | [100,150,∞] | | | | | SRA b-tag | 2–3 | ≥ 1 | > 200 GeV | > 100 GeV | [100,150,250,∞] | | | | | SRB b-tag | 4–5 | ≥ 1 | > 200 GeV | > 100 GeV | [100,150,250,∞] | | | | | SRC b-tag | ≥ 6 | ≥ 1 | - | > 100 GeV | [100,150,∞] | | | | | Electroweak on-Z Signal Regions | | | | | | | | | | Region | N _{jets} | $N_{\mathrm{b-jets}}$ | dijet mass | M_{T2} | E _T ^{miss} binning [GeV] | | | | | VZ | ≥ 2 | = 0 | $m_{ij} < 110 GeV$ | $M_{T2}(\ell\ell) > 80 \text{GeV}$ | [100,150,250,350,∞] | | | | | HZ | ≥ 2 | = 2 | $m_{bb} < 150 \mathrm{GeV}$ | $M_{T2}(\ell b\ell b) > 200 \text{ GeV}$ | [100,150,250,∞] | | | | | | | | Edge Si | gnal Regions | | | | | | Region | N _{jets} | $E_{\mathrm{T}}^{\mathrm{miss}}$ | $M_{T2}(\ell\ell)$ | tī likelihood | $m_{\ell\ell}$ binning [GeV] | | | | | Edge Fit | ≥ 2 | > 150 GeV | > 80 GeV | - | > 20 | | | | | tī like | ≥ 2 | > 150 GeV | > 80 GeV | < 21 | [20,60,86],[96,150,200,300,400,∞] | | | | | non-tī like | ≥ 2 | > 150 GeV | > 80 GeV | > 21 | [20,60,86],[96,150,200,300,400,∞] | | | | ## OS: On-Z results | SRA | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150-250 | 250+ | |------|--------------------------------------|---------------------|---------------------|---------------------|---------------------| | | Template | 208.5 ± 16.1 | 13.6±3.1 | 2.5 ± 0.9 | 3.3±2.4 | | | FS | $0.4^{+0.3}_{-0.2}$ | $0.4^{+0.3}_{-0.2}$ | $0.2^{+0.2}_{-0.1}$ | $0.2^{+0.2}_{-0.1}$ | | | Rares | $1.1 {\pm} 0.4$ | 0.8 ± 0.3 | $1.4 {\pm} 0.4$ | 2.4 ± 0.8 | | | Sum | 210.0 ± 16.1 | 14.8 ± 3.2 | 4.0 ± 1.0 | 5.9 ± 2.5 | | | Data | 210 | 23 | 5 | 4 | | SRAb | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150-250 | 250+ | | | Template | 92.2±10.4 | 8.2±2.1 | 1.2 ± 0.5 | 0.5 ± 0.3 | | | FS | 1.9 ± 0.7 | 2.3 ± 0.8 | $1.7^{+0.7}_{-0.6}$ | $0.1^{+0.2}_{-0.1}$ | | | Rares | 1.9 ± 0.4 | 1.9 ± 0.4 | 2.0 ± 0.5 | 1.8 ± 0.6 | | | Sum | 96.0 ± 10.4 | 12.4 ± 2.3 | 4.9 ± 1.0 | 2.5 ± 0.7 | | | Data | 96 | 14 | 7 | 1 | | SRB | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150-250 | 250+ | | | Template | 130.1±12.8 | 12.8 ± 2.3 | 0.9 ± 0.3 | $0.4 {\pm} 0.2$ | | | FS | 0.3 ± 0.2 | $0.4^{+0.3}_{-0.2}$ | $0.4^{+0.3}_{-0.2}$ | $0.1^{+0.2}_{-0.1}$ | | | Rares | 0.6 ± 0.2 | 0.3 ± 0.1 | 0.7 ± 0.2 | 1.2 ± 0.4 | | | Sum | 131.0 ± 12.8 | 13.6 ± 2.4 | 2.0 ± 0.5 | $1.6^{+0.5}_{-0.4}$ | | | Data | 131 | 10 | 4 | 0 | | SRBb | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150-250 | 250+ | | | Template | 37.9±6.7 | 7.7±3.1 | 4.0 ± 3.3 | 0.1 ± 0.1 | | | FS | $0.7^{+0.4}_{-0.3}$ | $1.4^{+0.6}_{-0.5}$ | $1.1^{+0.5}_{-0.4}$ | $0.2^{+0.2}_{-0.1}$ | | | Rares | 1.3 ± 0.4 | 2.0 ± 0.5 | 2.3 ± 0.6 | 1.0 ± 0.3 | | | Sum | 40.0 ± 6.8 | 11.1 ± 3.2 | 7.4 ± 3.4 | $1.3^{+0.4}_{-0.3}$ | | | Data | 40 | 10 | 5 | 0 | | SRC | E _T ^{miss} [GeV] | 50-100 | 100-150 | 150+ | | | | Template | 23.8±5.5 | 1.2 ± 0.4 | 0.1 ± 0.1 | | | | FS | $0.1^{+0.2}_{-0.1}$ | $0.4^{+0.3}_{-0.2}$ | $0.1^{+0.2}_{-0.1}$ | | | | Rares | 0.2 ± 0.1 | 0.1 ± 0.1 | 0.5 ± 0.2 | | | | Sum | 24.0±5.5 | 1.7±0.5 | $0.7^{+0.3}_{-0.2}$ | | | | Data | 24 | 4 | 0 | | | SRCb | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150+ | | | | Template | 9.9±3.7 | 0.1±0.5 | 0.0 ± 0.3 | | | | FS | $0.1^{+0.2}_{-0.1}$ | $0.0^{+0.1}_{-0.0}$ | 0.3 ± 0.2 | | | | Rares | 0.0 ± 0.1 | 0.6 ± 0.2 | 0.6 ± 0.2 | | | | Sum | 10.0±3.7 | $0.8 {\pm} 0.5$ | $0.9^{+0.5}_{-0.4}$ | | | | Data | 10 | 2 | 2 | | | | | | | . 4 .4 | | - Template prediction normalized in 1st bin - No significant deviation Christian Schomakers (RWTH Aachen) ## OS: Electroweak results & interpretation | WZ/ZZ | $E_{\rm T}^{\rm miss}$ [GeV] | 50-100 | 100-150 | 150-250 | 250-350 | 350+ | |-------|------------------------------|-----------------|-----------------|---------------|---------------------|---------------------| | | Template | 773.2±31.9 | 29.3 ± 4.4 | 2.9±2.1 | 1.0 ± 0.7 | 0.3 ± 0.3 | | | FS | $9.4{\pm}3.0$ | 11.1 ± 3.6 | 3.2 ± 1.1 | $0.1^{+0.2}_{-0.1}$ | $0.1^{+0.2}_{-0.1}$ | | | Rares | $10.4{\pm}2.6$ | 14.5 ± 4.0 | 15.5 ± 5.1 | 5.0 ± 1.8 | 2.2 ± 0.9 | | | Sum | 793.0 ± 32.2 | 54.9 ± 7.0 | 21.6 ± 5.6 | 6.0 ± 1.9 | 2.5 ± 0.9 | | | Data | 793 | 57 | 29 | 2 | 0 | | HZ | E _T miss [GeV] | 50-100 | 100-150 | 150-250 | 250+ | • | | | Template | 76.7 ± 9.4 | $2.9{\pm}2.4$ | 0.3 ± 0.2 | 0.1 ± 0.1 | | | | FS | $4.2 {\pm} 1.4$ | $4.0 {\pm} 1.4$ | $4.7{\pm}1.6$ | 0.9 ± 0.4 | | | | Rares | 1.1 ± 0.3 | $0.7{\pm}0.2$ | 0.6 ± 0.2 | 0.3 ± 0.1 | | | | Sum | 82.0 ± 9.5 | 7.6 ± 2.8 | 5.6 ± 1.6 | 1.3 ± 0.4 | | | | Data | 82 | 9 | 5 | 1 | | - Template prediction normalized in 1st bin - No significant deviation - Highest bins in WZ/ZZ region causes limits to be stronger than expected ## OS: tt likelihood discriminator Construct likelihood out of four variables that are characteristic for dileptonic $t\bar{t}$: - $ullet p_{ m T}^{miss}$ - Dilepton $p_{ m T}$ - $\Delta \phi(\ell \ell)$ - sum of $m_{\ell b}$'s ($m_{\ell j}$'s if < 2 b-jets) Evaluate shapes in DF data Cross check with tt MC Choose arbitrary 95%/5% bins ## OS: Off-Z results 35.9 fb (13 TeV) m_{ii} [GeV] | Mass range [GeV] | FS | Template | Rares | Sum | Observed | | | | |-------------------------|-------------------------|-----------------|-------------------------|-------------------------|----------|--|--|--| | t ī like | | | | | | | | | | 20-60 | $290.9_{-19.7}^{+20.7}$ | $0.4{\pm}0.3$ | $1.4 {\pm} 0.5$ | $292.7_{-19.7}^{+20.7}$ | 273 | | | | | 60-86 | $180.5^{+15.7}_{-14.7}$ | $0.9 {\pm} 0.7$ | 8.8±3.4 | $190.1^{+16.1}_{-15.1}$ | 190 | | | | | 96-150 | $175.5^{+15.4}_{-14.4}$ | $1.1 {\pm} 0.9$ | 6.0 ± 2.4 | $182.7^{+15.7}_{-14.6}$ | 192 | | | | | 150-200 | $73.3^{+10.4}_{-9.2}$ | $0.1 {\pm} 0.1$ | $0.4{\pm}0.2$ | $73.9^{+10.4}_{-9.2}$ | 66 | | | | | 200-300 | $46.9^{+8.4}_{-7.3}$ | 0.1±0.1 | 0.3 ± 0.1 | $47.3^{+8.4}_{-7.3}$ | 42 | | | | | 300-400 | $18.5^{+5.7}_{-4.5}$ | $0.0 {\pm} 0.0$ | 0.0 ± 0.0 | $18.6^{+5.7}_{-4.5}$ | 11 | | | | | >400 | $4.3_{-2.1}^{+3.4}$ | 0.0±0.0 | 0.1 ± 0.0 | $4.5^{+3.4}_{-2.1}$ | 4 | | | | | non-t t like | | | | | | | | | | 20-60 | $3.3^{+3.2}_{-1.8}$ | 0.7±0.5 | $1.4{\pm}0.5$ | $5.3^{+3.3}_{-1.9}$ | 6 | | | | | 60-86 | $3.3^{+3.2}_{-1.8}$ | 1.6±1.3 | 6.9±2.7 | $11.8^{+4.4}_{-3.5}$ | 19 | | | | | 96-150 | $6.6^{+3.9}_{-2.6}$ | 1.9±1.5 | 6.8±2.7 | $15.3^{+5.0}_{-4.1}$ | 28 | | | | | 150-200 | $5.5^{+3.7}_{-2.4}$ | 0.2±0.3 | 0.7±0.3 | $6.4^{+3.7}_{-2.4}$ | 7 | | | | | 200-300 | $3.3^{+3.2}_{-1.8}$ | $0.2 {\pm} 0.2$ | 0.5±0.2 | $3.9^{+3.2}_{-1.8}$ | 4 | | | | | 300-400 | $3.3_{-1.8}^{+3.2}$ | $0.1 {\pm} 0.1$ | 0.2 ± 0.1 | $3.5^{+3.2}_{-1.8}$ | 0 | | | | | >400 | $1.1^{+2.5}_{-0.9}$ | $0.1 {\pm} 0.1$ | $0.4{\pm}0.2$ | $1.6^{+2.5}_{-0.9}$ | 5 | | | | | | Super sig | nal regions (| non-t t like |) | | | | | | 20-86 | $6.5^{+3.9}_{-2.6}$ | 2.3±1.5 | 8.3±3.2 | $17.1^{+5.3}_{-4.4}$ | 25 | | | | | >96 | $19.6^{+5.8}_{-4.6}$ | 2.4±1.6 | 8.5±3.4 | $30.6^{+7.0}_{-6.0}$ | 44 | | | | | Drell–Yan | 191 ± 19 | |--------------------------|---| | OF yield | 768 ± 24 | | $R_{\rm SF/OF}$ | 1.07 ± 0.03 | | Signal events | 61.4 ± 27.9 | | $m_{\ell\ell}^{ m edge}$ | 144.2 ^{+3.3} _{-2.2} GeV | | Local significance | 2.3 σ | | Global significance | 1.5σ | ## LS: Signal regions #### HH | Signal regions split according | |--------------------------------| | to lepton p_{T} : | - Both $> 25 \text{ GeV} \rightarrow \text{HH}$ - One 10—25 GeV → HL - Both 10—25 GeV → LL | $ \begin{array}{ c c c c } \hline N_b & m_1^{min} (GeV) & E_p^{ibs} (GeV) & N_{pes} & H_T < 300 GeV & H_T \in [300,1125] GeV & H_T \in [1125,1300] GeV & H_T \in [1300,1600] GeV & H_T > 1600 GeV \\ \hline & & & & & & & & & & & \\ \hline & & & & &$ | | | | | | | | | | |--|-----------|--------------------------|---------------------------|----------------|----------------------------|--|---|--|-----------------------------| | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | N_{b} | m _T min (GeV) | E _T miss (GeV) | $N_{\rm jets}$ | $H_{\rm T} < 300{\rm GeV}$ | $H_{\rm T} \in [300, 1125] {\rm GeV}$ | $H_{\rm T} \in [1125, 1300] \text{GeV}$ | $H_{\rm T} \in [1300, 1600] \text{GeV}$ | $H_{\rm T} > 1600{\rm GeV}$ | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 50 - 200 | | SR1 | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | ~120 | 30 - 200 | | | | | | | | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | \120 | 200 — 300 | | | | | | | | | 0 | | 200 - 300 | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 50 - 200 | | SR3 | SR8 (++) / SR9 () | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | >120 | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | , | 200 - 300 | | | SR10 | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | | | CD44 | CD12 | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 50 - 200 | | SKII | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | <120 | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | | 200 - 300 | | | | | | | | | 1 | 1 | | | | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 50 - 200 | | SR14 () | 3R20 (++) / 3R21 () | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | >120 | | | | SR22 | SR46 (++) / | SR48 (++) / | SR50 (++) / | | $ 2 = \begin{array}{ c c c c c } \hline & & & & & & & & & & & & & & & & & & $ | | | 200 - 300 | | | | \ , , . | , , , , | | | $ 2 = \begin{bmatrix} <120 & & & & \geq 5 \\ 200 - 300 & & & 2.4 \\ & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 5 \\ \hline \\ 200 - 300 & & & \geq 2 \\ \hline \\ 201 & & & & \\ \hline \\ 201 $ | | | | | SR23 | SR24 | 1 | , | , | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | -120 | | ≥5 | | SR27 (++) / SR28 () | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | <120 | 200 200 | | | SR29 (++) / SR30 () | | | | | | 2 | | 200 – 300 | | SP25 (++) / | | | | | | | | | 50 - 200 | | | SR32 (++) / SR33 () | | | | | | | >120 | 30 - 200 | | 3R20 () | | | | | | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$ | | 7 120 | 200 - 300 | | | SR34 | | | | | | | | | ≥5 | | | | | | | ≥3 | | <120 | | >2 | | | | | | | >120 50 - 300 ≥2 SR40 SR41 | ≥3 | | 200 – 300 | _ | SR36 () | SR39 | | | | | | | >120 | 50 - 300 | ≥2 | SR40 | SR41 | | | | | SR44 (++) / SR45 () | inclusivo | inglucius | | >2 | _ | | SR42 (++) / S | SR43 () | | | | niciusive | niciusive | >500 | 22 | _ | | SR44 (++) / S | SR45 () | | #### HL | $N_{\rm b}$ | m _T ^{min} (GeV) | $E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) | $N_{\rm jets}$ | $H_{\mathrm{T}} < 300\mathrm{GeV}$ | $H_{\rm T} \in [300, 1125] {\rm GeV}$ | $H_{\rm T} \in [1125, 1300] {\rm GeV}$ | $H_{\rm T} > 1300{ m GeV}$ | | |--|-------------------------------------|--|----------------|------------------------------------|--|---|----------------------------|--| | | | 50 – 200 | | SR1 | SR2 | | | | | 0 | <120 | 30 – 200 | ≥5 | | SR4 | | | | | U | 120 | 200 - 300 | 2-4 | SR3 | SR5 (++) / SR6 () | | | | | | | 200 500 | ≥5 | | SR7 | | | | | | | 50 - 200 | 2-4 | SR8 | SR9 | | | | | 1 | <120 | 200 | ≥5 | SR10 (++) / | SR12 (++) / SR13 () | | | | | 1 120 | 200 - 300 | 2-4 | SR11 () | SR14 (++) / SR15 () | _ | | | | | | | | ≥5 | , , | SR16 (++) / SR17 () | SR38 (++) /
SR39 () | SR40 (++) / | | | | | 50 - 200 | 2-4 | SR18 | SR19 | | SR41 () | | | 2 | <120 | | ≥5 | SR20 (++) / | SR22 (++) / SR23 () | \ / | \ | | | | | 200 - 300 | 2-4 | SR21 () | SR24 (++) / SR25 () | | | | | | | 50 - 200 | ≥5 | SR27 (++) / | SR26
SR29 (++) / SR30 () | | | | | ≥3 | <120 | 200 - 200 | ≥2 | SR27 (++) /
SR28 () | SR29 (++) / SR30 () | | | | | inclusive | >120 | 50 - 300 | >2 | SR32 | SR33 | | | | | niciusive | /120 | | <u> </u> | 3132 | | P24 () / CD25 () | | | | inclusive | inclusive | 300 - 500 | ≥2 | _ | SR34 (++) / SR35 () | | | | | Metasive Metasive >500 22 — SR36 (++) / SR37 (-) | | | | | | | | | #### LL | $N_{\rm b}$ | $m_{\mathrm{T}}^{\mathrm{min}}$ (GeV) | H _T (GeV) | $E_{\mathrm{T}}^{\mathrm{miss}} \in [50, 200]\mathrm{GeV}$ | $E_{\mathrm{T}}^{\mathrm{miss}} > 200\mathrm{GeV}$ | |-------------|---------------------------------------|----------------------|--|--| | 0 | <120 | >300 | SR1 | SR2 | | 1 | | | SR3 | SR4 | | 2 | | | SR5 | SR6 | | ≥3 | | | SR7 | | | Inclusive | >120 | | SR8 | | ## LS: Results | | HH regions | | HL regions | | LL regions | | | |------|-----------------|----------|-----------------|----------|-----------------|----------|--| | | Expected SM | Observed | Expected SM | Observed | Expected SM | Observed | | | SR1 | 468 ± 98 | 435 | 419 ± 100 | 442 | 12.0 ± 3.9 | 12 | | | SR2 | 162 ± 25 | 166 | 100 ± 20 | 101 | 1.88 ± 0.62 | 3 | | | SR3 | 24.4 ± 5.4 | 30 | 9.2 ± 2.4 | 6 | 15.5 ± 4.7 | 17 | | | SR4 | 17.6 ± 3.0 | 24 | 15.0 ± 4.5 | 13 | 1.42 ± 0.69 | 4 | | | SR5 | 17.8 ± 3.9 | 22 | 7.3 ± 1.5 | 14 | 4.2 ± 1.4 | 5 | | | SR6 | 7.8 ± 1.5 | 6 | 4.1 ± 1.2 | 5 | 0.84 ± 0.48 | 2 | | | SR7 | 1.96 ± 0.47 | 2 | 1.01 ± 0.28 | 0 | 0.95 ± 0.52 | 0 | | | SR8 | 4.58 ± 0.81 | 5 | 300 ± 82 | 346 | 0.09 ± 0.07 | 0 | | | SR9 | 3.63 ± 0.75 | 3 | 73 ± 17 | 95 | | | | | SR10 | 2.82 ± 0.56 | 3 | 2.30 ± 0.61 | 1 | | | | | SR11 | 313 ± 87 | 304 | 2.24 ± 0.87 | 1 | | | | | SR12 | 104 ± 20 | 111 | 12.8 ± 3.3 | 12 | | | | | SR13 | 9.5 ± 1.9 | 13 | 8.9 ± 2.3 | 8 | | | | | SR14 | 8.7 ± 2.0 | 11 | 4.5 ± 1.3 | 5 | | | | | SR15 | 14.4 ± 2.9 | 17 | 4.7 ± 1.6 | 4 | | | | | SR16 | 12.7 ± 2.6 | 10 | 2.3 ± 1.1 | 1 | | | | | SR17 | 7.3 ± 1.2 | 11 | 0.73 ± 0.29 | 1 | | | | | SR18 | 3.92 ± 0.79 | 2 | 54 ± 12 | 62 | | | | | SR19 | 3.26 ± 0.74 | 3 | 23.7 ± 4.9 | 24 | | | | | SR20 | 2.6 ± 2.7 | 4 | 0.59 ± 0.17 | 2 | | | | | SR21 | 3.02 ± 0.75 | 3 | 0.34 ± 0.20 | 1 | | | | | SR22 | 2.80 ± 0.57 | 1 | 5.2 ± 1.2 | 9 | | | | | SR23 | 70 ± 12 | 90 | 4.9 ± 1.4 | 6 | | | | | SR24 | 35.7 ± 5.9 | 40 | 0.97 ± 0.27 | 0 | | | | | SR25 | 3.99 ± 0.73 | 2 | 1.79 ± 0.74 | 0 | | | | | SR26 | 2.68 ± 0.80 | 0 | 1.01 ± 0.27 | 1 | | | | | SR27 | 9.7 ± 1.8 | 9 | 1.03 ± 0.44 | 1 | | | | | SR28 | 7.9 ± 2.5 | 8 | 1.33 ± 0.61 | 0 | | | | | SR29 | 2.78 ± 0.58 | 1 | 2.89 ± 0.99 | 3 | | | | | SR30 | 1.86 ± 0.38 | 1 | 2.24 ± 0.79 | 2 | | | | | SR31 | 2.20 ± 0.54 | 1 | 0.27 ± 0.30 | 1 | | | | | SR32 | 1.85 ± 0.39 | 5 | 0.79 ± 0.33 | 1 | | | | | SR33 | 1.20 ± 0.32 | 0 | 0.53 ± 0.13 | 0 | | | | | SR34 | 1.81 ± 0.42 | 3 | 6.3 ± 1.3 | 6 | | | | | SR35 | 1.98 ± 0.61 | 1 | 2.92 ± 0.87 | 3 | | | | | SR36 | 1.43 ± 0.37 | 2 | 0.51 ± 0.15 | 3 | | | | | SR37 | 4.2 ± 1.3 | 2 | 0.15 ± 0.07 | 0 | | | | | SR38 | 3.04 ± 0.68 | 4 | 1.07 ± 0.33 | 3 | | | | | SR39 | 0.63 ± 0.17 | 1 | 0.81 ± 0.47 | 0 | | | | | SR40 | 0.29 ± 0.34 | 0 | 1.54 ± 0.50 | 4 | | | | | SR41 | 0.80 ± 0.22 | 3 | 1.23 ± 0.53 | 1 | | | | | SR42 | 13.4 ± 1.9 | 19 | | | | | | | SR43 | 8.0 ± 3.0 | 8 | | | | | | | SR44 | 3.33 ± 0.74 | 3 | | | | | | | SR45 | 0.94 ± 0.26 | 1 | | | | | | | SR46 | 2.92 ± 0.50 | 3 | | | | | | | SR47 | 1.78 ± 0.42 | 3 | | | | | | | SR48 | 1.95 ± 0.39 | 5 | | | | | | | SR49 | 1.23 ± 0.30 | 3 | | | | | | | SR50 | 1.46 ± 0.31 | 0 | | | | | | | SR51 | 0.74 ± 0.18 | 0 | | | | | | #### Aggregate inclusive signal regions | SR | Leptons | N _{jets} | $N_{\rm b}$ | H _T (GeV) | E _T ^{miss} (GeV) | $m_{\mathrm{T}}^{\mathrm{min}}$ (GeV) | SM expected | Observed | N _{obs,UL} | |--------|---------|-------------------|-------------|----------------------|--------------------------------------|---------------------------------------|-----------------|----------|---------------------| | InSR1 | | ≥2 | 0 | ≥1200 | ≥50 | _ | 4.00 ± 0.79 | 10 | 12.35 | | InSR2 | | ≥2 | ≥2 | ≥1100 | ≥50 | _ | 3.63 ± 0.71 | 4 | 5.64 | | InSR3 | | ≥2 | 0 | _ | ≥450 | _ | 3.72 ± 0.83 | 4 | 5.62 | | InSR4 | | ≥2 | ≥2 | _ | ≥300 | _ | 3.32 ± 0.81 | 6 | 8.08 | | InSR5 | | ≥2 | 0 | | ≥250 | ≥120 | 1.68 ± 0.44 | 2 | 4.46 | | InSR6 | HH | ≥2 | ≥2 | _ | ≥150 | ≥120 | 3.82 ± 0.76 | 7 | 9.06 | | InSR7 | | ≥2 | 0 | ≥900 | ≥200 | _ | 5.6 ± 1.1 | 10 | 10.98 | | InSR8 | | ≥2 | ≥2 | ≥900 | ≥200 | _ | 5.8 ± 1.3 | 9 | 9.77 | | InSR9 | | ≥7 | — | _ | ≥50 | _ | 10.1 ± 2.7 | 9 | 7.39 | | InSR10 | | \geq 4 | — | _ | ≥50 | ≥120 | 15.2 ± 3.5 | 22 | 16.73 | | InSR11 | | ≥2 | ≥3 | _ | ≥50 | _ | 13.3 ± 3.4 | 17 | 13.63 | | InSR12 | | ≥2 | 0 | ≥700 | ≥50 | _ | 3.6 ± 2.5 | 3 | 4.91 | | InSR13 | LL | ≥2 | _ | _ | ≥200 | _ | 4.9 ± 2.9 | 10 | 11.76 | | InSR14 | LL | ≥5 | _ | _ | ≥50 | _ | 7.3 ± 5.5 | 6 | 6.37 | | InSR15 | | ≥2 | ≥3 | _ | ≥50 | _ | 1.06 ± 0.99 | 0 | 2.31 | #### Aggregate exclusive signal regions | SR | Leptons | N _{jets} | $N_{\rm b}$ | $E_{\mathrm{T}}^{\mathrm{miss}}$ (GeV) | H_{T} (GeV) | $m_{\mathrm{T}}^{\mathrm{min}}$ (GeV) | SM expected | Observed | |--------|---------|-------------------|-------------|--|------------------------|---------------------------------------|-----------------|----------| | ExSR1 | | ≥2 | 0 | 50-300 | <1125 | <120 for $H_{\rm T} > 300$ | 700 ± 130 | 685 | | ExSR2 | | ≥2 | 0 | 50-300 | 300-1125 | ≥120 | 11.0 ± 2.2 | 11 | | ExSR3 | | ≥2 | 1 | 50-300 | <1125 | <120 for $H_{\rm T} > 300$ | 477 ± 120 | 482 | | ExSR4 | | ≥2 | 1 | 50-300 | 300-1125 | ≥120 | 8.4 ± 3.5 | 8 | | ExSR5 | | ≥2 | 2 | 50-300 | <1125 | <120 for $H_{\rm T} > 300$ | 137 ± 25 | 152 | | ExSR6 | HH | ≥2 | 2 | 50-300 | 300-1125 | ≥120 | 4.9 ± 1.2 | 8 | | ExSR7 | | ≥2 | ≥3 | 50-300 | <1125 | <120 for $H_{\rm T} > 300$ | 11.6 ± 3.1 | 10 | | ExSR8 | | ≥2 | ≥3 | 50-300 | 300-1125 | ≥120 | 0.8 ± 0.24 | 3 | | ExSR9 | | ≥2 | _ | ≥300 | ≥300 | _ | 25.7 ± 5.4 | 31 | | ExSR10 | | ≥2 | _ | 50-300 | ≥1125 | _ | 10.1 ± 2.2 | 14 | | ExSR11 | | ≥2 | _ | 50-300 | <1125 | <120 | 1070 ± 250 | 1167 | | ExSR12 | HL | ≥2 | — | 50-300 | <1125 | ≥120 | 1.33 ± 0.46 | 1 | | ExSR13 | TIL | ≥2 | _ | ≥300 | ≥300 | _ | 9.9 ± 2.5 | 12 | | ExSR14 | | ≥2 | — | 50-300 | ≥1125 | _ | 4.7 ± 1.8 | 8 | | ExSR15 | LL | ≥2 | _ | ≥50 | ≥300 | _ | 37 ± 12 | 43 | ## LS: Additional interpretations ## (pseudo-) scalar boson production in association with top quarks #### Model independent limits ## Multilepton: Results #### Off-Z signal regions | 1- 1 | II (C-V) | Emiss (C-XI) | M (C-V) | F1 | 011 | SR | |------------|----------------------|--------------------------------------|----------------------|--------------------------|----------|-------| | b-tags | H _T (GeV) | E _T ^{miss} (GeV) | M _T (GeV) | Expected | Observed | | | | 60-400 | 50-150 | < 120 | $206 \pm 6 \pm 35$ | 201 | SR1a | | | | | ≥ 120 | $1.4 \pm 0.5 \pm 0.2$ | 3 | SR1b | | | | 150-300 | < 120 | $25.9 \pm 2.1 \pm 4.3$ | 24 | SR2a | | 0 b-tags | | | ≥ 120 | $0.84 \pm 0.34 \pm 0.12$ | 0 | SR2b | | 0 b-tags | | 50-150 | < 120 | $15.6 \pm 1.6 \pm 2.1$ | 21 | SR3a | | | 400-600 | 30-130 | ≥ 120 | $0.19 \pm 0.09 \pm 0.02$ | 0 | SR3b | | | 400-600 | 150-300 | < 120 | $6.0 \pm 0.8 \pm 0.7$ | 5 | SR4a | | | | 130-300 | ≥ 120 | $0.19 \pm 0.09 \pm 0.04$ | 0 | SR4b | | | 60-400 | 50-150 | | $202\pm 6\pm 44$ | 191 | SR5 | | 1 h to oo | | 150-300 | inclusive | $25.6 \pm 1.9 \pm 4.6$ | 25 | SR6 | | 1 b-tags | 400-600 | 50-150 | litciusive | $15.4 \pm 1.3 \pm 2.2$ | 21 | SR7 | | | | 150-300 | | $7.3\pm1\pm1.1$ | 7 | SR8 | | | 60-400 | 50-150 | inclusive | $47.7 \pm 2.8 \pm 7.6$ | 51 | SR9 | | Oh ta oo | | 150-300 | | $5.3 \pm 0.5 \pm 0.6$ | 5 | SR10 | | 2 b-tags | 400-600 | 50-150 | | $5.8 \pm 0.7 \pm 0.8$ | 9 | SR11 | | | | 150-300 | | $2.9 \pm 0.5 \pm 0.4$ | 2 | SR12 | | ≥ 3 b-tags | 60-600 | 50-300 | inclusive | $3.9 \pm 0.7 \pm 0.6$ | 6 | SR13 | | | ≥ 600 | FO 1FO | < 120 | $14.4 \pm 1.2 \pm 1.6$ | 20 | SR14a | | | | 50-150 | ≥ 120 | $0.28 \pm 0.14 \pm 0.04$ | 0 | SR14b | | . 1 . | | 150-300 | < 120 | $12.1 \pm 1.4 \pm 1.6$ | 10 | SR15a | | inclusive | | | ≥ 120 | $0.40 \pm 0.12 \pm 0.05$ | 0 | SR15b | | | ≥ 60 | ≥ 60 ≥ 300 | < 120 | $12.1 \pm 1.5 \pm 1.9$ | 7 | SR16a | | | | | ≥ 120 | $0.70 \pm 0.25 \pm 0.11$ | 0 | SR16b | #### On-Z signal regions | b-tags | H _T (GeV) | E _T miss (GeV) | M _T (GeV) | Expected | Observed | SR | |------------|----------------------|---------------------------|----------------------|-----------------------------|----------|-------| | _ | 60-400 | 50-150 | < 120 | $266 \pm 5 \pm 39$ | 241 | SR1a | | | | | ≥ 120 | $30\pm2\pm4$ | 33 | SR1b | | | | 150-300 | < 120 | $53.8 \pm 2.2 \pm 8$ | 61 | SR2a | | 0 b-tags | | | ≥ 120 | $5.69 \pm 0.76 \pm 0.69$ | 9 | SR2b | | 0 b-tags | | 50-150 | < 120 | $44.6 \pm 1.9 \pm 6.5$ | 52 | SR3a | | | 400-600 | 30-130 | ≥ 120 | $5.1 \pm 0.6 \pm 0.7$ | 6 | SR3b | | | 400-600 | 150-300 | < 120 | $16.6 \pm 1.3 \pm 2.5$ | 17 | SR4a | | | | 130-300 | ≥ 120 | $1.43 \pm 0.33 \pm 0.2$ | 1 | SR4b | | | 60-400 | 50-150 | | $115.70 \pm 3.50 \pm 15.23$ | 115 | SR5 | | 1 b-tags | | 150-300 | inclusive | $21.7 \pm 1.2 \pm 2.8$ | 19 | SR6 | | 1 b-tags | 400-600 | 50-150 | inclusive | $25.2 \pm 1.2 \pm 3.6$ | 25 | SR7 | | | | 150-300 | | $7.5\pm0.8\pm1$ | 9 | SR8 | | | 60-400 | 50-150 | | $47\pm1.6\pm7.4$ | 64 | SR9 | | 2 h taga | | 150-300 | inclusive | $7.2\pm0.8\pm1.2$ | 6 | SR10 | | 2 b-tags | 400-600 | 50-150 | inclusive | $11.7 \pm 1 \pm 2.1$ | 12 | SR11 | | | | 150-300 | | $2.6 \pm 0.4 \pm 0.4$ | 6 | SR12 | | ≥ 3 b-tags | 60-600 | 50-300 | inclusive | $4.7 \pm 0.5 \pm 0.9$ | 5 | SR13 | | | ≥ 600 | E0 150 | < 120 | $33\pm2\pm4$ | 42 | SR14a | | inclusive | | 50-150 | ≥ 120 | $4.6 \pm 0.6 \pm 0.6$ | 6 | SR14b | | | | 150-300 | < 120 | $15.8 \pm 1.2 \pm 2$ | 13 | SR15a | | | | | ≥ 120 | $1.9 \pm 0.3 \pm 0.2$ | 4 | SR15b | | | ≥ 60 | ≥ 300 | < 120 | $19.1 \pm 1.1 \pm 2.8$ | 23 | SR16a | | | ≥ 60 | | ≥ 120 | $2.28 \pm 0.35 \pm 0.26$ | 5 | SR16b |