

Introduction

- $B \rightarrow K^{*} \ell^{+} \ell^{-}$and $B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}$are flavor-changing neutral current (FCNC) ${ }^{\text {EW penguin }}$ decays that are forbidden in the SM at tree level ($\ell^{ \pm}=e^{ \pm}$or $\mu^{ \pm}$)
- They proceed at higher orders via penguin loops \& box diagrams
- New physics (NP) adds new loops with new particles

\rightarrow modifies SM predictions

\rightarrow probes new physics at \sim few TeV scale
- Angular observables bear high sensitivity to NP
- $B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}$is highly suppressed in the SM and the τ may couple stronger to NP than light ℓ
G. Eigen, EPS17 Venice, 06/07/2017

Angular

Asymmetries

in the Decays $B \rightarrow K^{*} \ell^{+} \ell^{-}$

Angular Distributions in $B \rightarrow K^{*} \ell^{+} \ell^{-}$

- The $B \rightarrow K^{*} \ell^{+} \ell^{-}$angular distribution depends on three angles, $\theta_{K}, \theta_{\ell}, \phi$
- θ_{K} is angle between $K \& B$ in K^{*} rest frame
- θ_{ℓ} is angle between $\ell^{+}\left(\ell^{-}\right) \& B(\bar{B})$ in $\ell^{+} \ell^{-}$rest frame
- ϕ is the angle between the di-lepton and $K \pi$ decay planes

- The full angular distribution involves 11 coefficients that can be determined from angular fits for each $\mathrm{q}^{2}=\mathrm{m}_{\ell \ell}$ bin \rightarrow for $C P$-averaged rates get 8 independent coefficients
- Use 1-d projections due to limited-statistics samples
e $W\left(\cos \theta_{K}\right)=\frac{3}{2} \mathcal{F}_{L}\left(q^{2}\right) \cos ^{2} \theta_{K}+\frac{3}{4}\left(1-\mathcal{F}_{L}\left(q^{2}\right)\right) \sin ^{2} \theta_{K} \quad \mathcal{F}_{L}\left(q^{2}\right)$: K^{*} longitudinal polarization
- $W\left(\cos \theta_{\ell}\right)=\frac{3}{4} \mathcal{F}_{L}\left(q^{2}\right) \sin ^{2} \theta_{\ell}+\frac{3}{8}\left(1-\mathcal{F}_{L}\left(q^{2}\right)\right)\left(1+\cos ^{2} \theta_{\ell}\right)+\mathcal{A}_{F B}\left(q^{2}\right) \cos \theta_{\ell} \quad \mathcal{A}_{F B}\left(q^{2}\right)$: lepton forwardbackward asymmetry
- Fit angular distributions in 5 bins of $\mathrm{q}^{2} \& \mathrm{q}^{2}{ }_{0}=1-6 \mathrm{GeV}^{2}$ to extract $\mathcal{F}_{\mathrm{L}}\left(\mathrm{q}^{2}\right)$ and $\mathcal{A}_{\mathrm{FB}}\left(\mathrm{q}^{2}\right)$
- Determine also $P_{2}\left(q^{2}\right)=(-2 / 3) * \mathcal{A}_{\mathrm{FB}}\left(q^{2}\right) /\left(1-\mathcal{F}_{\mathrm{L}}\left(q^{2}\right)\right)$ that has smaller theory uncertainty

Analysis Methodology

BDTs for $B^{+} \rightarrow K^{+}\left(\rightarrow K_{s}^{0} \pi^{+}\right) e^{+} e^{-}$

- Reconstruct 5 final states:
- $B^{+} \rightarrow K^{*+}\left(\rightarrow K^{0}{ }^{0} \pi^{+}\right) \mu^{+} \mu^{-}$
- $B^{0} \rightarrow K^{*} 0\left(\rightarrow K^{+} \pi\right) \mu^{+} \mu^{-}$
- $B^{+} \rightarrow K^{++}\left(\rightarrow K^{0}{ }_{S} \pi^{+}\right) e^{+} e^{-}$
- $\left.B^{+} \rightarrow K^{+}+\rightarrow K^{+} \pi^{0}\right) e^{+} e^{-}$
- $B^{0} \rightarrow K^{*}\left(\rightarrow K^{+} \pi\right) e^{+} e^{-}$
- Use kinematic variables:

- $m_{E S}=\sqrt{E_{\text {beam }}^{\star 2}-p_{B}^{* 2}}$ and $\Delta E=E_{B}^{*}-E_{\text {beam }}^{\star}$
- Use 8 bagged decision trees with 10 input variables to separate signal from $B \bar{B}$ and $q \bar{q}$ backgrounds for low/high q^{2} and $e^{+} e^{-} / \mu^{+} \mu^{-}$separately

q^{2} bin	$q^{2} \min \left(\mathrm{GeV}^{2} / c^{4}\right)$	$q^{2} \max \left(\mathrm{GeV}^{2} / c^{4}\right)$
q_{1}^{2}	0.10	2.00
q_{2}^{2}	2.00	4.30
q_{3}^{2}	4.30	8.12
q_{4}^{2}	10.11	12.89
q_{5}^{2}	14.21	$\left(m_{B}-m_{K^{*}}\right)^{2}$
q_{0}^{2}	1.00	6.00

- Combine $B \bar{B}$ BDT outputs into likelihood ratios:

$$
L_{R}=\frac{P_{s i g}}{P_{s i g}+P_{b k g}} \rightarrow \text { require } L_{R}>0.6
$$

- Initially, perform 3-d unbinned maximum-likelihood fit to $m_{E S,} m_{K \pi}, L_{R}$ in each q^{2} bin for each signal mode separately requiring $m_{E S}>5.2 \mathrm{GeV}$
\rightarrow fix normalizations and pdfs for $m_{E S,}, m_{K \pi}, L_{R}$
G. Eigen, EPS17 Venice, 06/07/2017

Determination of Angular Observables

- In each q^{2} bin for each signal mode separately define normalizations and pdfs for $m_{E S}$, $m_{K \pi}, L_{R}$ in angular-fit signal region ($m_{E S}>5.27 \mathrm{GeV}$) using results from prior fits
- Add $\cos \theta_{K}$ as $4^{\text {th }}$ variable in likelihood function with $\mathcal{F}_{L}\left(\boldsymbol{q}^{2}\right)$ as only free parameter keeping all other parameters fixed
- Add $\cos \theta_{\ell}$ as $4^{\text {th }}$ variable in likelihood function with $\mathcal{A}_{F B}\left(q^{2}\right)$ as only free parameter keeping all other parameters and $\mathcal{F}_{L}\left(q^{2}\right)$ fixed
- Determine each angular result subsequently by direct construction and examination of $\log (\mathrm{L})$ curves from scan across entire $\mathcal{F}_{L}\left(q^{2}\right)$ and $\mathcal{A}_{F B}\left(q^{2}\right)$ parameter space
- Use signal classes: correctly reconstructed, mis-reconstructed (cross feed) events Use background classes: combinatorial, leakage from $\mathrm{J} / \psi, \psi(2 \mathrm{~S})$ region (vetoed), hadrons misidentified as muons
Fit projections for $B^{0} \rightarrow K^{+}\left(\rightarrow K^{+} \pi^{-}\right) e^{+} e^{-}$

G. Eigen, EPS17 Venice, 06/07/2017

$B \rightarrow K^{*} \ell^{+} \ell^{-}$Angular Fit Projections

- Angular fit projections for bin $\mathrm{q}^{2}{ }_{0}$ (1-6 GeV${ }^{2}$)

$\mathcal{F}_{L}\left(q^{2}\right)$ and $\mathcal{A}_{F B}\left(q^{2}\right)$ Measurements

- BABAR $\mathcal{F}_{L}\left(q^{2}\right)$:
for q^{2} \& $\mathrm{q}^{2}{ }_{3}$ see 3σ \& 2σ deviations from the SM; values are lower for $B^{+} \rightarrow K^{*} \ell^{+} \ell^{-}$ than for $B^{0} \rightarrow K^{*} \ell^{+} \ell^{-}$

- BABAR $\mathcal{A}_{F B}\left(q^{2}\right)$: agrees well with the SM except for $q^{2}{ }_{2}$ bin that shows $>2 \sigma$ deviation; values for $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$ agree with those of
$B^{0} \rightarrow K^{*} \ell^{+} \ell^{-}$

Belle: PRL 103, 171801 (2012) CDF: PRL 108, 081807 (2012)
LHCb: JHEP1308, 131 (2013)

CMS: PLB 727, 77 (2013)
q^{2} ATLAS: ATLAS-CONF 2013-038 (2013) BABAR: PRD 93, no 5, 052015 (2016)

$\mathcal{F}_{L}\left(q^{2}\right)$ and $\mathcal{A}_{F B}\left(q^{2}\right)$ Measurements

- $\mathcal{F}_{L}\left(q^{2}\right)$: new LHCb results are consistent with those of the SM
- $\mathcal{A}_{F B}\left(q^{2}\right):$ new LHCb results are in good agreement with the SM predictions

Comparison of \mathcal{F}_{L} and $\mathcal{A}_{F B}$ for $\operatorname{Bin} q^{2}{ }_{0}$

- In bin $\mathrm{q}^{2}{ }_{0}$, BABAR results for \mathcal{F}_{L} are substantially lower than the SM prediction
\rightarrow deviation is $>3 \sigma$
- BABAR results for $\mathcal{A}_{F B}$ agree with the SM prediction, as do those of other experiments

Belle: PRL 103, 171801 (2012)
CDF: PRL 108, 081807 (2012)

LHCb: JHEP1308, 131 (2013)
CMS: PLB 727, 77 (2013)

ATLAS: ATLAS-CONF 2013-038 (2013)
BABAR: PRD 93, no 5, 052015 (2016)

Results for P_{2}

- Extract P_{2} from the angular fit results
- In bin $\mathrm{q}^{2}{ }_{2}$, see $>2 \sigma$ discrepancy with the SM prediction
- In bin $\mathrm{q}^{2}{ }_{0}, \mathrm{P}_{2}=0.11 \pm 0.10$

$$
P_{2}\left(q^{2}\right)=-\frac{2}{3} \frac{\mathcal{A}_{F B}}{1-\mathcal{F}_{L}}
$$

BABAR: PRD 93, no 5, 052015 (2016)

Search for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$

Analysis Methodology

- Use the full BABAR data set of $471 \times 10^{6} B \bar{B}$ events
- Tag one B meson via full hadronic reconstruction and look for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$in the recoil
- Hadronic $B_{t a g} \rightarrow X_{c} X$ reconstruction:

$\left.X_{c}=D^{(*) 0} \pi, D^{(*) \pm}, D_{s}{ }^{*}\right), J / \psi \& X=$ combination of 5π and/or K
- Use purely leptonic decays of both τ 's
- Main background:

- $\mathrm{B}_{\text {signal }}$ selection:
- Exactly 3 tracks with correct PID
- $\mathrm{m}_{\mathrm{ES}}>5.27 \mathrm{GeV}^{2}$
- $\mathrm{E}_{\text {sig }}$ miss $>0 \mathrm{GeV}$
- Reduce continuum background with Multi-Layer Perceptron NN using 6 event shape variables inserted into likelihood ratio

$$
\mathcal{L}=\frac{P_{B}}{P_{B}+P_{q}}>0.5
$$

$$
P_{B}=\Pi_{i} P_{B}\left(x_{i}\right) \text { : probability for } B \bar{B}
$$

$$
P_{q}=\Pi_{i} P_{q}\left(x_{i}\right): \text { probability for } q \bar{q}
$$

- Removes 75% of $q \bar{q}$ background while retaining 80% of $B \bar{B}$ (signal+background) events

Final Selection and Results

- Define another MLP NN using 8 event shape variables to reduce $B \bar{B}$ bkg peaking background
- Select MLP > $0.7(0.75)$ for $\mathrm{e}^{+} \mathrm{e}^{-}, \mu^{+} \mu^{-}(\mathrm{e} \mu)$
- Remaining peaking backgrounds: 84% (correct B-tag, $m_{E s}$ peaks at right mass)
- Cross check of $\mathrm{B}_{\mathrm{tag}}$ signal with $B^{+} \rightarrow D^{0} \ell^{+} v_{\ell}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)$ before MLP output requirement \rightarrow good agreement

- Systematic uncertainties:
- PID: $\mathrm{e}^{+} \mathrm{e}^{-}: 5 \%, \mu^{+} \mu^{-}: 7 \%$, e $\mu: 5 \%$
- π^{0} veto: 3%
- MLP NN: 2.6%
- $\mathrm{B}_{\text {tag }}$: efficiency 1.2%, background estimate 1.6%
- Theory 3\%
- Observed yield: 176 ± 13 events
- Set branching fraction upper limit $\mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=2.25 \times 10^{-3} @ 90 \% \mathrm{CL}$
G. Eigen, EPS17 Venice, 06/07/2017

	$e^{+} e^{-}$	$\mu^{+} \mu^{-}$	$e^{+} \mu^{-}$
N_{bkg}^{i}	$49.4 \pm 2.4 \pm 2.9$	$45.8 \pm 2.4 \pm 3.2$	$59.2 \pm 2.8 \pm 3.5$
$\epsilon_{\mathrm{sig}}^{i}\left(\times 10^{-5}\right)$	$1.1 \pm 0.2 \pm 0.1$	$1.3 \pm 0.2 \pm 0.1$	$2.1 \pm 0.2 \pm 0.2$
$N_{\text {obs }}^{i}$	45	39	92
Significance (σ)	-0.6	-0.9	3.7

Conclusions

- We measured the angular distributions of $B^{+} \rightarrow K^{+} \ell^{+} \ell^{-}$and $B^{0} \rightarrow K^{*} \ell^{+} \ell^{-}$extracting $\mathcal{F}_{L}\left(q^{2}\right)$, $\mathcal{A}_{F B}\left(q^{2}\right)$ and P_{2} in five disjoint bins of q^{2} and $q^{2}{ }_{0}$
- $\mathcal{F}_{L}\left(q^{2}\right)$ for K^{*+} shows larger deviations from the SM prediction than that for $\mathrm{K}^{* 0}$
- For K^{*} combination, $\mathcal{F}_{L}\left(q^{2}\right)$ deviates from the SM prediction in bins $q^{2}{ }_{2}(\geq 3 \sigma)$ and $q^{2}{ }_{3}$ $(\geq 2 \sigma)$
- For K^{*} combination, $\mathcal{A}_{F B}\left(q^{2}\right)$ deviates from the $S M$ prediction in bin $q^{2}{ }_{2}(\geq 2 \sigma)$
- For K^{*} combination, P_{2} deviates from the $S M$ prediction in bin $q^{2}{ }_{2}(\geq 2 \sigma)$
- World averages for $\mathcal{F}_{L}\left(q^{2}\right)$ and $\mathcal{A}_{F B}\left(q^{2}\right)$ do not show large deviations from the SM predictions
- We searched for $\mathrm{B}^{+} \rightarrow \mathrm{K}^{+} \tau^{+} \tau^{-}$and set a branching fraction upper limit of

$$
\mathcal{B}\left(B^{+} \rightarrow K^{+} \tau^{+} \tau^{-}\right)=2.25 \times 10^{-3} @ 90 \% \mathrm{CL}
$$

Backup Slides

Systematic Errors for $B \rightarrow K^{*} \ell^{+} \ell^{-}$

F_{L} systematic					$\mathcal{A}_{F B}$ systematic			
	$\rightarrow K^{*+} \ell^{+} \ell^{-}$						$B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$	
	$B^{+} \rightarrow K^{*} \ell^{+} \ell^{-}$	$B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}$	$B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$	$B \rightarrow K^{*} \ell^{+} \ell^{-}$				
q_{0}^{2}	$+0.02-0.10$	$+0.02-0.02$	$+0.02-0.02$	$+0.08-0.05$	$+0.06-0.05$	$+0.07-0.09$		
q_{1}^{2}	$+0.09-0.14$	$+0.15-0.02$	$+0.13-0.05$	$+0.13-0.16$	$+0.10-0.21$	$+0.08-0.19$		
q_{2}^{2}	$+0.18-0.10$	$+0.02-0.10$	$+0.02-0.02$	$+0.36-0.49$	$+0.12-0.11$	$+0.14-0.11$		
q_{3}^{2}	$+0.05-0.08$	$+0.05-0.05$	$+0.05-0.07$	$+0.08-0.20$	$+0.08-0.08$	$+0.08-0.05$		
q_{4}^{2}	$+0.16-0.15$	$+0.06-0.06$	$+0.07-0.10$	$+0.11-0.24$	$+0.17-0.16$	$+0.14-0.13$		
q_{5}^{2}	$+0.10-0.21$	$+0.02-0.11$	$+0.07-0.14$	$+0.18-0.17$	$+0.10-0.10$	$+0.10-0.12$		

	$B^{+} \rightarrow K^{*+} \ell^{+} \ell^{-}$	$B^{0} \rightarrow K^{* 0} \ell^{+} \ell^{-}$	$B \rightarrow K^{*} \ell^{+} \ell^{-}$
q_{0}^{2}	$-0.22_{-0.13}^{+0.14}$	$-0.07_{-0.21}^{+0.20}$	$-0.18_{-0.13}^{+0.13}$
q_{1}^{2}	$-0.29_{-0.17}^{+0.19}$	$+0.12_{-0.29}^{+0.27}$	$-0.09_{-0.17}^{+0.18}$
q_{2}^{2}	$-0.38_{-0.28}^{+0.35}$	$-0.27_{-0.24}^{+0.25}$	$-0.35_{-0.16}^{+0.19}$
q_{3}^{2}	$-0.09_{-0.21}^{+0.24}$	$-0.22_{-0.22}^{+0.27}$	$-0.14_{-0.13}^{+0.15}$
q_{4}^{2}	$-0.15_{-0.26}^{+0.28}$	$-0.48_{-0.24}^{+0.34}$	$-0.42_{-0.20}^{+0.26}$
q_{5}^{2}	$-0.95_{-0.96}^{+1.84}$	$-0.37_{-0.24}^{+0.28}$	$-0.41_{-0.21}^{+0.34}$

