

## **Electroweak precision** measurements at CLIC



## Igor Boyko, Iouri Nefedov, Steven Green, Matthias Weber on behalf of the CLIC detector and physics (CLICdp) collaboration

The Compact Linear Collider (CLIC) is an option for a future electron-positron collider operating at centre-of-mass energies from a few hundred GeV up to 3 TeV. Following an overview of precision electroweak measurements possible at a high-energy electron-positron collider like CLIC, details will be presented on two recent physics benchmark analyses based on full detector simulations and assuming centre-of-mass energies of 1.4 and 3 TeV. Vector boson scattering gives insight into the mechanism of electroweak symmetry breaking. The processes  $e^+e^- \rightarrow WW\nu\bar{\nu}$  and  $e^+e^- \rightarrow ZZ\nu\bar{\nu}$  were studied using fully hadronic events which provide the full kinematic information on the final-state bosons. The expected precisions on anomalous gauge couplings are extracted. The process  $e^+e^- \rightarrow \gamma\gamma$  allows for a search for deviations from QED. The expected sensitivities to a finite electron size and other scenarios are discussed.

CLIC physics programme in energy stages:

• Largest sensitivity and branching for full hadronic Di-photon production offers a clean experimental

- Allows for a guaranteed physics program for the first stage in a timely manner
- Higher energy stages can be adapted in case of discoveries by the LHC
- Highest stage motivated by technology/realistic costs



channel.

• Main background from  $e\gamma$  processes with four quark final states (photon picked up from beamstrahlung).

Analysis Strategy:

- Particles grouped into four jets, pair jets into two candidate bosons
- Pair jets, that invariant masses of boson candidates closest to each other.
- k<sub>t</sub> algorithm with R=0.9 (1.1) used for jet clustering at 1.4 (3) TeV



Invariant mass of total system as function of  $\alpha_4$  and

signature at high energies, calculable to very high precision.



Signal and background after selection

Select two high energetic photons:

•  $E_{\gamma 1} > 1.3 \text{ TeV}, E_{\gamma 2} > 1.2 \text{ TeV}$ 

- Photons back-to-back in  $\theta, \phi > 170^{\circ}$
- Third photon veto of 50 GeV

Reject backgrounds of electrons (Bhabha scattering) by vetoing tracks with p > 300 GeV within 20 ° around photon candidates





- 380 GeV: concentration on Higgs measurements (production dominated by HZ and WW fusion) and top measurements, e.g. top asymmetry
- Top threshold scan for top mass determination around 350 GeV
- At higher energies, boosted tops as probe of Beyond Standard Model (BSM) physics; Higgs self coupling measurements
- Precision measurements as probe for BSM physics: WW scattering and di-photon production

WW Vector Boson Scattering at 1.4 and 3 TeV



 $\alpha_5$  converted into  $\chi^2$  value confidence limits with null hypothesis  $\alpha_4$  and  $\alpha_5$  are 0 (as in the SM).



Invariant mass of the system as function of  $\alpha_4$  and  $\alpha_5$  (left) and a multi-boson interaction confidence limit summary plot from ATLAS based on 8 TeV data (right).



Measured polar angle distribution probing QED predictions



BSM signals are compared to SM di-photon cross section. The BSM signals are flat as function of the polar angle and lead to noticeable increase of events particularly at small polar angles.

| enario | ΔL = 0.2 % | ΔL = 0.5 % | ΔL = 1 % | LEP limit |  |
|--------|------------|------------|----------|-----------|--|
|        |            |            |          |           |  |

Sensitive to anomalous gauge couplings; massive gauge bosons described by effective field theory:



Here: Quartic coupling terms

 $V^{\mu}$  corresponds to a linear combination of massive gauge bosons  $W^{\pm}$  and Z



 $\alpha_5 \text{Tr}[V^{\mu}V_{\mu}]^2$ 

- Expected precision to anomalous gauge coupling measurements of CLIC at 1.4 TeV and 3 TeV.
- The 3 TeV result leads to an increased sensitivity of an order of magnitude compared to the 1.4 TeV result and tighter limits than the current LHC results.

## **Di-Photon production at 3 TeV**

"My

High precision QED measurements allow probing for deviations from the SM



Born term of di-photon cross section

| QED cut-off (finite electron size)<br><b>AQED (95% CL)</b>    | 6.52 TeV | 6.33 TeV | 6.01 TeV | ~ 390 GeV |
|---------------------------------------------------------------|----------|----------|----------|-----------|
| Contact interactions<br>Λ' (95% CL)                           | 20.7 TeV | 20.1 TeV | 18.9 TeV | ~ 830 GeV |
| Extra dimensions<br>M <sub>s</sub> /λ <sup>1/4</sup> (95% CL) | 16.3 TeV | 15.9 TeV | 15.3 TeV | ~ 1 TeV   |
| Excited electron<br>Me* (95% CL)                              | 5.03 TeV | 4.87 TeV | 4.7 TeV  | ~ 250 GeV |

• A precise polar angle measurement can probe several different models

 Numbers are extrapolated for an integrated luminosity of 2 ab<sup>-1</sup> at 3 TeV, given for different assumptions on the precision of integrated luminosity.

More information about the experimental environment at CLIC and Higgs physics at CLIC available at [1] Higgs Physics at the CLIC electron-positron collider, arXiv:1608.07538, accepted for publication by EPJC [2] Updated Baseline for a staged Compact Linear Collider: arXiv:1608.07537, CERN-2016-004